Interpretable Deep Reinforcement Learning for Optimizing Heterogeneous
Energy Storage Systems
- URL: http://arxiv.org/abs/2310.14783v1
- Date: Fri, 20 Oct 2023 02:26:17 GMT
- Title: Interpretable Deep Reinforcement Learning for Optimizing Heterogeneous
Energy Storage Systems
- Authors: Luolin Xiong, Yang Tang, Chensheng Liu, Shuai Mao, Ke Meng, Zhaoyang
Dong, Feng Qian
- Abstract summary: Energy storage systems (ESS) are pivotal component in the energy market, serving as both energy suppliers and consumers.
To enhance ESS flexibility within the energy market, a heterogeneous photovoltaic-ESS (PV-ESS) is proposed.
We develop a comprehensive cost function that takes into account degradation, capital, and operation/maintenance costs to reflect real-world scenarios.
- Score: 11.03157076666012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Energy storage systems (ESS) are pivotal component in the energy market,
serving as both energy suppliers and consumers. ESS operators can reap benefits
from energy arbitrage by optimizing operations of storage equipment. To further
enhance ESS flexibility within the energy market and improve renewable energy
utilization, a heterogeneous photovoltaic-ESS (PV-ESS) is proposed, which
leverages the unique characteristics of battery energy storage (BES) and
hydrogen energy storage (HES). For scheduling tasks of the heterogeneous
PV-ESS, cost description plays a crucial role in guiding operator's strategies
to maximize benefits. We develop a comprehensive cost function that takes into
account degradation, capital, and operation/maintenance costs to reflect
real-world scenarios. Moreover, while numerous methods excel in optimizing ESS
energy arbitrage, they often rely on black-box models with opaque
decision-making processes, limiting practical applicability. To overcome this
limitation and enable transparent scheduling strategies, a prototype-based
policy network with inherent interpretability is introduced. This network
employs human-designed prototypes to guide decision-making by comparing
similarities between prototypical situations and encountered situations, which
allows for naturally explained scheduling strategies. Comparative results
across four distinct cases underscore the effectiveness and practicality of our
proposed pre-hoc interpretable optimization method when contrasted with
black-box models.
Related papers
- Empowering Distributed Solutions in Renewable Energy Systems and Grid
Optimization [3.8979646385036175]
Machine learning (ML) advancements play a crucial role in empowering renewable energy sources and improving grid management.
The incorporation of big data and ML into smart grids offers several advantages, including heightened energy efficiency.
However, challenges like handling large data volumes, ensuring cybersecurity, and obtaining specialized expertise must be addressed.
arXiv Detail & Related papers (2023-10-24T02:45:16Z) - A Human-on-the-Loop Optimization Autoformalism Approach for
Sustainability [27.70596933019959]
This paper outlines a natural conversational approach to solving personalized energy-related problems using large language models (LLMs)
We put forward a strategy that augments an LLM with an optimization solver, enhancing its proficiency in understanding and responding to user specifications and preferences.
Our approach pioneers the novel concept of human-guided optimization autoformalism, translating a natural language task specification automatically into an optimization instance.
arXiv Detail & Related papers (2023-08-20T22:42:04Z) - Multi-market Energy Optimization with Renewables via Reinforcement
Learning [1.0878040851638]
This paper introduces a deep reinforcement learning framework for optimizing the operations of power plants pairing renewable energy with storage.
The framework handles complexities such as time coupling by storage devices, uncertainty in renewable generation and energy prices, and non-linear storage models.
It utilizes RL to incorporate complex storage models, overcoming restrictions of optimization-based methods that require convex and differentiable component models.
arXiv Detail & Related papers (2023-06-13T21:35:24Z) - Optimal Planning of Hybrid Energy Storage Systems using Curtailed
Renewable Energy through Deep Reinforcement Learning [0.0]
We propose a sophisticated deep reinforcement learning (DRL) methodology with a policy-based algorithm to plan energy storage systems (ESS)
A quantitative performance comparison proved that the DRL agent outperforms the scenario-based optimization (SO) algorithm.
The corresponding results confirmed that the DRL agent learns the way like what a human expert would do, suggesting reliable application of the proposed methodology.
arXiv Detail & Related papers (2022-12-12T02:24:50Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Learning Optimization Proxies for Large-Scale Security-Constrained
Economic Dispatch [11.475805963049808]
Security-Constrained Economic Dispatch (SCED) is a fundamental optimization model for Transmission System Operators (TSO)
This paper proposes to learn an optimization proxy for SCED, i.e., a Machine Learning (ML) model that can predict an optimal solution for SCED in milliseconds.
Numerical experiments are reported on the French transmission system, and demonstrate the approach's ability to produce, within a time frame that is compatible with real-time operations.
arXiv Detail & Related papers (2021-12-27T00:44:06Z) - Enforcing Policy Feasibility Constraints through Differentiable
Projection for Energy Optimization [57.88118988775461]
We propose PROjected Feasibility (PROF) to enforce convex operational constraints within neural policies.
We demonstrate PROF on two applications: energy-efficient building operation and inverter control.
arXiv Detail & Related papers (2021-05-19T01:58:10Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - Demand Responsive Dynamic Pricing Framework for Prosumer Dominated
Microgrids using Multiagent Reinforcement Learning [59.28219519916883]
This paper proposes a new multiagent Reinforcement Learning based decision-making environment for implementing a Real-Time Pricing (RTP) DR technique in a prosumer dominated microgrid.
The proposed technique addresses several shortcomings common to traditional DR methods and provides significant economic benefits to the grid operator and prosumers.
arXiv Detail & Related papers (2020-09-23T01:44:57Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.