Agent-Based Feature Generation from Clinical Notes for Outcome Prediction
- URL: http://arxiv.org/abs/2508.01956v1
- Date: Sun, 03 Aug 2025 23:45:18 GMT
- Title: Agent-Based Feature Generation from Clinical Notes for Outcome Prediction
- Authors: Jiayi Wang, Jacqueline Jil Vallon, Neil Panjwani, Xi Ling, Sushmita Vij, Sandy Srinivas, John Leppert, Mark K. Buyyounouski, Mohsen Bayati,
- Abstract summary: We introduce SNOW, a modular multi-agent system powered by large language models (LLMs) that autonomously generates structured clinical features from unstructured notes without human intervention.<n>We evaluated SNOW against manual CFG, clinician-guided LLM approaches, and RFG methods for predicting 5-year prostate cancer recurrence in 147 patients from Stanford Healthcare.
- Score: 4.5134876868616765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic health records (EHRs) contain rich unstructured clinical notes that could enhance predictive modeling, yet extracting meaningful features from these notes remains challenging. Current approaches range from labor-intensive manual clinician feature generation (CFG) to fully automated representational feature generation (RFG) that lack interpretability and clinical relevance. Here we introduce SNOW (Scalable Note-to-Outcome Workflow), a modular multi-agent system powered by large language models (LLMs) that autonomously generates structured clinical features from unstructured notes without human intervention. We evaluated SNOW against manual CFG, clinician-guided LLM approaches, and RFG methods for predicting 5-year prostate cancer recurrence in 147 patients from Stanford Healthcare. While manual CFG achieved the highest performance (AUC-ROC: 0.771), SNOW matched this performance (0.761) without requiring any clinical expertise, significantly outperforming both baseline features alone (0.691) and all RFG approaches. The clinician-guided LLM method also performed well (0.732) but still required expert input. SNOW's specialized agents handle feature discovery, extraction, validation, post-processing, and aggregation, creating interpretable features that capture complex clinical information typically accessible only through manual review. Our findings demonstrate that autonomous LLM systems can replicate expert-level feature engineering at scale, potentially transforming how clinical ML models leverage unstructured EHR data while maintaining the interpretability essential for clinical deployment.
Related papers
- AUTOCT: Automating Interpretable Clinical Trial Prediction with LLM Agents [47.640779069547534]
AutoCT is a novel framework that combines the reasoning capabilities of large language models with the explainability of classical machine learning.<n>We show that AutoCT performs on par with or better than SOTA methods on clinical trial prediction tasks within only a limited number of self-refinement iterations.
arXiv Detail & Related papers (2025-06-04T11:50:55Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - Simulated patient systems are intelligent when powered by large language model-based AI agents [32.73072809937573]
We developed AIPatient, an intelligent simulated patient system powered by large language model-based AI agents.<n>The system incorporates the Retrieval Augmented Generation framework, powered by six task-specific LLM-based AI agents for complex reasoning.<n>For simulation reality, the system is also powered by the AIPatient KG (Knowledge Graph), built with de-identified real patient data.
arXiv Detail & Related papers (2024-09-27T17:17:15Z) - Improving Mortality Prediction After Radiotherapy with Large Language Model Structuring of Large-Scale Unstructured Electronic Health Records [2.608410928225647]
This study developed and validated the RTSurv framework to structure unstructured electronic health records alongside structured clinical data.<n>Using unstructured data from 34,276 patients and an external cohort of 852, the framework successfully transformed unstructured information into structured formats.
arXiv Detail & Related papers (2024-08-09T14:02:24Z) - ClinicRealm: Re-evaluating Large Language Models with Conventional Machine Learning for Non-Generative Clinical Prediction Tasks [22.539696532725607]
Large Language Models (LLMs) are increasingly deployed in medicine.<n>However, their utility in non-generative clinical prediction remains under-evaluated.<n>Our ClinicRealm study addresses this by benchmarking 9 GPT-based LLMs, 5 BERT-based models, and 7 traditional methods on unstructured clinical notes and structured Electronic Health Records.
arXiv Detail & Related papers (2024-07-26T06:09:10Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - SemioLLM: Evaluating Large Language Models for Diagnostic Reasoning from Unstructured Clinical Narratives in Epilepsy [45.2233252981348]
Large Language Models (LLMs) have been shown to encode clinical knowledge.<n>We present SemioLLM, an evaluation framework that benchmarks 6 state-of-the-art models.<n>We show that most LLMs are able to accurately and confidently generate probabilistic predictions of seizure onset zones in the brain.
arXiv Detail & Related papers (2024-07-03T11:02:12Z) - ClinicalAgent: Clinical Trial Multi-Agent System with Large Language Model-based Reasoning [16.04933261211837]
Large Language Models (LLMs) and multi-agent systems have shown impressive capabilities in natural language tasks but face challenges in clinical trial applications.
We introduce Clinical Agent System (ClinicalAgent), a clinical multi-agent system designed for clinical trial tasks.
arXiv Detail & Related papers (2024-04-23T06:30:53Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
Generative Large Language Models (LLMs) hold significant promise in healthcare.
This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center.
arXiv Detail & Related papers (2024-01-05T15:09:57Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - A Multimodal Transformer: Fusing Clinical Notes with Structured EHR Data
for Interpretable In-Hospital Mortality Prediction [8.625186194860696]
We provide a novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital mortality.
To improve interpretability, we propose an integrated gradients (IG) method to select important words in clinical notes.
We also investigate the significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT.
arXiv Detail & Related papers (2022-08-09T03:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.