ClinicRealm: Re-evaluating Large Language Models with Conventional Machine Learning for Non-Generative Clinical Prediction Tasks
- URL: http://arxiv.org/abs/2407.18525v2
- Date: Sun, 18 May 2025 11:40:04 GMT
- Title: ClinicRealm: Re-evaluating Large Language Models with Conventional Machine Learning for Non-Generative Clinical Prediction Tasks
- Authors: Yinghao Zhu, Junyi Gao, Zixiang Wang, Weibin Liao, Xiaochen Zheng, Lifang Liang, Miguel O. Bernabeu, Yasha Wang, Lequan Yu, Chengwei Pan, Ewen M. Harrison, Liantao Ma,
- Abstract summary: Large Language Models (LLMs) are increasingly deployed in medicine.<n>However, their utility in non-generative clinical prediction remains under-evaluated.<n>Our ClinicRealm study addresses this by benchmarking 9 GPT-based LLMs, 5 BERT-based models, and 7 traditional methods on unstructured clinical notes and structured Electronic Health Records.
- Score: 22.539696532725607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are increasingly deployed in medicine. However, their utility in non-generative clinical prediction, often presumed inferior to specialized models, remains under-evaluated, leading to ongoing debate within the field and potential for misuse, misunderstanding, or over-reliance due to a lack of systematic benchmarking. Our ClinicRealm study addresses this by benchmarking 9 GPT-based LLMs, 5 BERT-based models, and 7 traditional methods on unstructured clinical notes and structured Electronic Health Records (EHR). Key findings reveal a significant shift: for clinical note predictions, leading LLMs (e.g., DeepSeek R1/V3, GPT o3-mini-high) in zero-shot settings now decisively outperform finetuned BERT models. On structured EHRs, while specialized models excel with ample data, advanced LLMs (e.g., GPT-4o, DeepSeek R1/V3) show potent zero-shot capabilities, often surpassing conventional models in data-scarce settings. Notably, leading open-source LLMs can match or exceed proprietary counterparts. These results establish modern LLMs as powerful non-generative clinical prediction tools, particularly with unstructured text and offering data-efficient structured data options, thus necessitating a re-evaluation of model selection strategies. This research should serve as an important insight for medical informaticists, AI developers, and clinical researchers, potentially prompting a reassessment of current assumptions and inspiring new approaches to LLM application in predictive healthcare.
Related papers
- Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models [52.2001050216955]
Existing methods aim to enhance the performance of Medical Vision Language Model (MedVLM) by adjusting model structure, fine-tuning with high-quality data, or through preference fine-tuning.<n>We propose an expert-in-the-loop framework named Expert-Controlled-Free Guidance (Expert-CFG) to align MedVLM with clinical expertise without additional training.
arXiv Detail & Related papers (2025-07-12T09:03:30Z) - PatientDx: Merging Large Language Models for Protecting Data-Privacy in Healthcare [2.1046377530356764]
Fine-tuning of Large Language Models (LLMs) has become the default practice for improving model performance on a given task.
PatientDx is a framework of model merging that allows the design of effective LLMs for health-predictive tasks without requiring fine-tuning nor adaptation on patient data.
arXiv Detail & Related papers (2025-04-24T08:21:04Z) - Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - Large Language Models are Powerful EHR Encoders [4.520903886487343]
Domain-specific EHR foundation models have demonstrated promising improvements in predictive accuracy and generalization.
We explore the possibility of using general-purpose Large Language Models (LLMs) based embedding methods as EHR encoders.
We evaluate two state-of-the-art LLM-embedding models, GTE-Qwen2-7B-Instruct and LLM2Vec-Llama3.1-8B-Instruct, across 15 diverse clinical prediction tasks.
arXiv Detail & Related papers (2025-02-24T18:30:36Z) - Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
This study proposes using large language models (LLMs) to elicit expert prior distributions for predictive models.
We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation.
Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
In-hospital mortality (IHM) prediction for ICU patients is critical for timely interventions and efficient resource allocation.
This study integrates structured physiological data and clinical notes with Large Language Model (LLM)-generated expert summaries to improve IHM prediction accuracy.
arXiv Detail & Related papers (2024-11-25T16:36:38Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
We examine the effectiveness of vector representations from last hidden states of Large Language Models for medical diagnostics and prognostics.
We focus on instruction-tuned LLMs in a zero-shot setting to represent abnormal physiological data and evaluate their utilities as feature extractors.
Although findings suggest the raw data features still prevails in medical ML tasks, zero-shot LLM embeddings demonstrate competitive results.
arXiv Detail & Related papers (2024-08-15T03:56:40Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)<n>Our research aims to transform existing medication recommendation methodologies using LLMs.<n>To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
Large Language Models (LLMs) are traditionally tailored for natural language processing.
This research investigates the adaptability of LLMs, like GPT-4, to EHR data.
In response to the longitudinal, sparse, and knowledge-infused nature of EHR data, our prompting approach involves taking into account specific characteristics.
arXiv Detail & Related papers (2024-01-25T20:14:50Z) - Natural Language Programming in Medicine: Administering Evidence Based Clinical Workflows with Autonomous Agents Powered by Generative Large Language Models [29.05425041393475]
Generative Large Language Models (LLMs) hold significant promise in healthcare.
This study assessed the potential of LLMs to function as autonomous agents in a simulated tertiary care medical center.
arXiv Detail & Related papers (2024-01-05T15:09:57Z) - Meta Transfer of Self-Supervised Knowledge: Foundation Model in Action
for Post-Traumatic Epilepsy Prediction [0.6291443816903801]
We introduce a novel training strategy for our foundation model.
We demonstrate that the proposed strategy significantly improves task performance on small-scale clinical datasets.
Results further demonstrated the enhanced generalizability of our foundation model.
arXiv Detail & Related papers (2023-12-21T07:42:49Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z) - Do We Still Need Clinical Language Models? [15.023633270864675]
We show that relatively small specialized clinical models substantially outperform all in-context learning approaches.
We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.
arXiv Detail & Related papers (2023-02-16T05:08:34Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Fine-Tuning Large Neural Language Models for Biomedical Natural Language
Processing [55.52858954615655]
We conduct a systematic study on fine-tuning stability in biomedical NLP.
We show that finetuning performance may be sensitive to pretraining settings, especially in low-resource domains.
We show that these techniques can substantially improve fine-tuning performance for lowresource biomedical NLP applications.
arXiv Detail & Related papers (2021-12-15T04:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.