Simulated patient systems are intelligent when powered by large language model-based AI agents
- URL: http://arxiv.org/abs/2409.18924v3
- Date: Tue, 29 Jul 2025 06:10:45 GMT
- Title: Simulated patient systems are intelligent when powered by large language model-based AI agents
- Authors: Huizi Yu, Jiayan Zhou, Lingyao Li, Shan Chen, Jack Gallifant, Anye Shi, Xiang Li, Jingxian He, Wenyue Hua, Mingyu Jin, Guang Chen, Yang Zhou, Zhao Li, Trisha Gupte, Ming-Li Chen, Zahra Azizi, Yongfeng Zhang, Yanqiu Xing, Themistocles L. Danielle S. Bitterman, Themistocles L. Assimes, Xin Ma, Lin Lu, Lizhou Fan,
- Abstract summary: We developed AIPatient, an intelligent simulated patient system powered by large language model-based AI agents.<n>The system incorporates the Retrieval Augmented Generation framework, powered by six task-specific LLM-based AI agents for complex reasoning.<n>For simulation reality, the system is also powered by the AIPatient KG (Knowledge Graph), built with de-identified real patient data.
- Score: 32.73072809937573
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Simulated patient systems play an important role in modern medical education and research, providing safe, integrative medical training environments and supporting clinical decision-making simulations. We developed AIPatient, an intelligent simulated patient system powered by large language model-based AI agents. The system incorporates the Retrieval Augmented Generation (RAG) framework, powered by six task-specific LLM-based AI agents for complex reasoning. For simulation reality, the system is also powered by the AIPatient KG (Knowledge Graph), built with de-identified real patient data from the Medical Information Mart for Intensive Care (MIMIC)-III database. Primary outcomes showcase the system's intelligence, including the system's accuracy in Electronic Record (EHR)-based medical Question Answering (QA), readability, robustness, and stability. The system achieved a QA accuracy of 94.15% when all six AI agents present, surpassing benchmarks with partial or no agent integration. Its knowledgebase demonstrated high validity (F1 score=0.89). Readability scores showed median Flesch Reading Ease at 77.23 and median Flesch Kincaid Grade at 5.6, indicating accessibility to all medical professionals. Robustness and stability were confirmed with non-significant variance (ANOVA F-value=0.6126, p > 0.1; F-value=0.782, p > 0.1). A user study with medical students further demonstrated that AIPatient offers high fidelity, strong usability, and effective educational value, performing comparably or better than human-simulated patients in medical history-taking scenarios. The promising intelligence of the AIPatient system highlights its potential to support a wide range of applications, including medical education, model evaluation, and system integration.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - The Impact of Foundational Models on Patient-Centric e-Health Systems [2.2667044928324747]
We investigate the integration and maturity of AI feature integration in 116 patient-centric healthcare applications.<n>Our results show that over 86.21% of applications remain at the early stages of AI integration, while only 13.79% demonstrate advanced AI integration.
arXiv Detail & Related papers (2025-07-29T14:56:01Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.<n>We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.<n>We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Foundation Model of Electronic Medical Records for Adaptive Risk Estimation [6.248030496243407]
ETHOS is a versatile framework for developing a wide range of applications.<n>ARES uses ETHOS to compute dynamic, personalized risk probabilities for clinician-defined critical events.<n>ARES also features a personalized explainability module that highlights key clinical factors influencing risk estimates.
arXiv Detail & Related papers (2025-02-10T03:22:39Z) - Leveraging AI for Automatic Classification of PCOS Using Ultrasound Imaging [0.0]
The AUTO-PCOS Classification Challenge seeks to advance the diagnostic capabilities of artificial intelligence (AI) in identifying Polycystic Ovary Syndrome (PCOS)<n>This report outlines our methodology for building a robust AI pipeline utilizing transfer learning with the InceptionV3 architecture to achieve high accuracy in binary classification.
arXiv Detail & Related papers (2024-12-30T11:56:11Z) - A Scalable Approach to Benchmarking the In-Conversation Differential Diagnostic Accuracy of a Health AI [0.0]
This study introduces a scalable benchmarking methodology for assessing health AI systems.<n>Our methodology employs 400 validated clinical vignettes across 14 medical specialties, using AI-powered patient actors to simulate realistic clinical interactions.<n>August achieved a top-one diagnostic accuracy of 81.8% (327/400 cases) and a top-two accuracy of 85.0% (340/400 cases), significantly outperforming traditional symptom checkers.
arXiv Detail & Related papers (2024-12-17T05:02:33Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Detecting Bias and Enhancing Diagnostic Accuracy in Large Language Models for Healthcare [0.2302001830524133]
Biased AI-generated medical advice and misdiagnoses can jeopardize patient safety.
This study introduces new resources designed to promote ethical and precise AI in healthcare.
arXiv Detail & Related papers (2024-10-09T06:00:05Z) - Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
Ventilator-associated pneumonia (VAP) in traumatic brain injury (TBI) patients poses a significant mortality risk.
Timely detection and prognostication of VAP in TBI patients are crucial to improve patient outcomes and alleviate the strain on healthcare resources.
We implemented six machine learning models using the MIMIC-III database.
arXiv Detail & Related papers (2024-08-02T09:44:18Z) - Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology [0.6397820821509177]
We introduce an alternative approach to multimodal medical AI that utilizes the generalist capabilities of a large language model (LLM) as a central reasoning engine.
This engine autonomously coordinates and deploys a set of specialized medical AI tools.
We show that the system has a high capability in employing appropriate tools (97%), drawing correct conclusions (93.6%), and providing complete (94%), and helpful (89.2%) recommendations for individual patient cases.
arXiv Detail & Related papers (2024-04-06T15:50:19Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - The Potential of Wearable Sensors for Assessing Patient Acuity in
Intensive Care Unit (ICU) [12.359907390320453]
Acuity assessments are vital in critical care settings to provide timely interventions and fair resource allocation.
Traditional acuity scores do not incorporate granular information such as patients' mobility level, which can indicate recovery or deterioration in the ICU.
In this study, we evaluated the impact of integrating mobility data collected from wrist-worn accelerometers with clinical data obtained from EHR for developing an AI-driven acuity assessment score.
arXiv Detail & Related papers (2023-11-03T21:52:05Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - EVA: Generating Longitudinal Electronic Health Records Using Conditional
Variational Autoencoders [34.22731849545798]
We propose EHR Variational Autoencoder (EVA) for synthesizing sequences of discrete EHR encounters and encounter features.
We illustrate that EVA can produce realistic sequences, account for individual differences among patients, and can be conditioned on specific disease conditions.
We assess the utility of the methods on large real-world EHR repositories containing over 250, 000 patients.
arXiv Detail & Related papers (2020-12-18T02:37:49Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.