論文の概要: Fast and Memory-efficient Non-line-of-sight Imaging with Quasi-Fresnel Transform
- arxiv url: http://arxiv.org/abs/2508.02003v1
- Date: Mon, 04 Aug 2025 02:46:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.15215
- Title: Fast and Memory-efficient Non-line-of-sight Imaging with Quasi-Fresnel Transform
- Title(参考訳): 準Fresnel変換を用いた高速・メモリ効率非視線イメージング
- Authors: Yijun Wei, Jianyu Wang, Leping Xiao, Zuoqiang Shi, Xing Fu, Lingyun Qiu,
- Abstract要約: 非視線画像(NLOS)は、中間面からの反射を分析して隠れた物体を再構成しようとする。
既存の手法は通常、計測データと隠れたシーンを3次元でモデル化する。
本稿では,2次元関数を用いた隠れシーンを表現した新しい手法を提案する。
- 参考スコア(独自算出の注目度): 14.022158965627836
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-line-of-sight (NLOS) imaging seeks to reconstruct hidden objects by analyzing reflections from intermediary surfaces. Existing methods typically model both the measurement data and the hidden scene in three dimensions, overlooking the inherently two-dimensional nature of most hidden objects. This oversight leads to high computational costs and substantial memory consumption, limiting practical applications and making real-time, high-resolution NLOS imaging on lightweight devices challenging. In this paper, we introduce a novel approach that represents the hidden scene using two-dimensional functions and employs a Quasi-Fresnel transform to establish a direct inversion formula between the measurement data and the hidden scene. This transformation leverages the two-dimensional characteristics of the problem to significantly reduce computational complexity and memory requirements. Our algorithm efficiently performs fast transformations between these two-dimensional aggregated data, enabling rapid reconstruction of hidden objects with minimal memory usage. Compared to existing methods, our approach reduces runtime and memory demands by several orders of magnitude while maintaining imaging quality. The substantial reduction in memory usage not only enhances computational efficiency but also enables NLOS imaging on lightweight devices such as mobile and embedded systems. We anticipate that this method will facilitate real-time, high-resolution NLOS imaging and broaden its applicability across a wider range of platforms.
- Abstract(参考訳): 非視線画像(NLOS)は、中間面からの反射を分析して隠れた物体を再構成しようとする。
既存の手法は典型的には3次元で計測データと隠れたシーンの両方をモデル化し、隠れた物体の本質的に2次元の性質を見渡す。
この監視により、計算コストが高く、メモリ消費が大幅に増加し、実用的な応用が制限され、軽量デバイス上でリアルタイムで高解像度のNLOSイメージングが困難になる。
本稿では,2次元関数を用いて隠れシーンを表現し,擬似Fresnel変換を用いて,測定データと隠れシーンとの直接反転式を確立する手法を提案する。
この変換は、問題の2次元特性を利用して、計算複雑性とメモリ要求を大幅に削減する。
本アルゴリズムは,これらの2次元集約データ間の高速な変換を効率よく行い,最小限のメモリ使用量で隠蔽オブジェクトを高速に再構築する。
既存の手法と比較して,本手法は画像品質を維持しながら,実行時間とメモリ要求を桁違いに削減する。
メモリ使用量の大幅な削減は、計算効率を高めるだけでなく、モバイルや組み込みシステムなどの軽量デバイス上でのNLOSイメージングを可能にする。
我々は,この手法がリアルタイム・高解像度NLOSイメージングを容易にし,その適用範囲を幅広いプラットフォームに広げることを期待している。
関連論文リスト
- mGRADE: Minimal Recurrent Gating Meets Delay Convolutions for Lightweight Sequence Modeling [0.5236468296934584]
mGRADEは、時間的1D-畳み込みと学習可能な間隔を統合したハイブリッドメモリシステムである。
我々は,mGRADEがマルチスケールの時間的特徴を効果的に分離し,保存することを示した。
これは、エッジにおけるメモリ制約付きマルチスケールの時間処理の効率的なソリューションとしてのmGRADEの約束を強調している。
論文 参考訳(メタデータ) (2025-07-02T15:44:35Z) - LODGE: Level-of-Detail Large-Scale Gaussian Splatting with Efficient Rendering [68.93333348474988]
メモリ制約デバイス上での3次元ガウススプラッティングのための新しいレベル・オブ・ディーテール(LOD)法を提案する。
カメラ距離に基づいてガウスの最適部分集合を反復的に選択する。
本手法は,屋外(階層型3DGS)と屋内(Zip-NeRF)の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2025-05-29T06:50:57Z) - TF-SASM: Training-free Spatial-aware Sparse Memory for Multi-object Tracking [6.91631684487121]
コンピュータビジョンにおけるマルチオブジェクト追跡(MOT)は依然として重要な課題であり、ビデオシーケンス内の複数のオブジェクトの正確な位置決めと連続的な追跡が必要である。
本稿では,オブジェクトの動きと重なり合う認識に基づいて,重要な特徴を選択的に記憶するメモリベースの新しいアプローチを提案する。
提案手法はDanceTrackテストセットのMOTRv2よりも有意に改善し,AsAスコアが2.0%,IFF1スコアが2.1%向上した。
論文 参考訳(メタデータ) (2024-07-05T07:55:19Z) - Efficient Visual State Space Model for Image Deblurring [99.54894198086852]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
提案したEVSSMは、ベンチマークデータセットや実世界の画像に対する最先端の手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - SOAR: Advancements in Small Body Object Detection for Aerial Imagery Using State Space Models and Programmable Gradients [0.8873228457453465]
空中画像における小さな物体検出は、コンピュータビジョンにおいて重要な課題である。
トランスフォーマーベースのモデルを用いた従来の手法は、特殊データベースの欠如に起因する制限に直面していることが多い。
本稿では,小型空中物体の検出とセグメンテーション機能を大幅に向上する2つの革新的なアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-02T19:47:08Z) - Memory-Efficient Optical Flow via Radius-Distribution Orthogonal Cost Volume [5.706823248738482]
本稿では,高分解能光フロー推定のためのメモリ効率の高い新しい手法であるMeFlowを提案する。
Sintel と KITTI のベンチマークでは,高解像度入力において高いメモリ効率を維持しながら,競合性能を実現している。
論文 参考訳(メタデータ) (2023-12-06T12:43:11Z) - A survey on efficient vision transformers: algorithms, techniques, and
performance benchmarking [19.65897437342896]
Vision Transformer (ViT) アーキテクチャは、コンピュータビジョンアプリケーションに取り組むために人気が高まり、広く使われている。
本稿では,ビジョントランスフォーマーを効率的にするための戦略を数学的に定義し,最先端の方法論を記述・議論し,その性能を異なるアプリケーションシナリオで解析する。
論文 参考訳(メタデータ) (2023-09-05T08:21:16Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
サラウンドビュー画像を用いた3次元物体検出は、自動運転にとって必須の課題である。
マルチビュー画像における3次元オブジェクト検出のためのスパースアテンションと直接特徴クエリを探索するトランスフォーマーベースのフレームワークであるDETR4Dを提案する。
論文 参考訳(メタデータ) (2022-12-15T14:18:47Z) - SALISA: Saliency-based Input Sampling for Efficient Video Object
Detection [58.22508131162269]
ビデオオブジェクト検出のための新しい一様SALiencyベースの入力SAmpling技術であるSALISAを提案する。
SALISAは小物体の検出を著しく改善することを示す。
論文 参考訳(メタデータ) (2022-04-05T17:59:51Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。