Protego: User-Centric Pose-Invariant Privacy Protection Against Face Recognition-Induced Digital Footprint Exposure
- URL: http://arxiv.org/abs/2508.02034v1
- Date: Mon, 04 Aug 2025 04:03:01 GMT
- Title: Protego: User-Centric Pose-Invariant Privacy Protection Against Face Recognition-Induced Digital Footprint Exposure
- Authors: Ziling Wang, Shuya Yang, Jialin Lu, Ka-Ho Chow,
- Abstract summary: Services like Clearview AI and PimEyes allow anyone to upload a facial photo and retrieve a large amount of online content associated with that person.<n>This not only enables identity inference but also exposes their digital footprint, such as social media activity, private photos, and news reports, often without their consent.<n>We propose Protego, a user-centric privacy protection method that safeguards facial images from such retrieval-based privacy intrusions.
- Score: 4.752324012811179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face recognition (FR) technologies are increasingly used to power large-scale image retrieval systems, raising serious privacy concerns. Services like Clearview AI and PimEyes allow anyone to upload a facial photo and retrieve a large amount of online content associated with that person. This not only enables identity inference but also exposes their digital footprint, such as social media activity, private photos, and news reports, often without their consent. In response to this emerging threat, we propose Protego, a user-centric privacy protection method that safeguards facial images from such retrieval-based privacy intrusions. Protego encapsulates a user's 3D facial signatures into a pose-invariant 2D representation, which is dynamically deformed into a natural-looking 3D mask tailored to the pose and expression of any facial image of the user, and applied prior to online sharing. Motivated by a critical limitation of existing methods, Protego amplifies the sensitivity of FR models so that protected images cannot be matched even among themselves. Experiments show that Protego significantly reduces retrieval accuracy across a wide range of black-box FR models and performs at least 2x better than existing methods. It also offers unprecedented visual coherence, particularly in video settings where consistency and natural appearance are essential. Overall, Protego contributes to the fight against the misuse of FR for mass surveillance and unsolicited identity tracing.
Related papers
- Personalized Privacy Protection Mask Against Unauthorized Facial Recognition [11.078375461923088]
Face recognition (FR) can be abused for privacy intrusion. Governments, private companies, or even individual attackers can collect facial images by web scraping to build an FR system identifying human faces without their consent.
This paper introduces Chameleon, which learns to generate a user-centric personalized privacy protection mask, coined as P3-Mask, to protect facial images against unauthorized FR with three salient features.
arXiv Detail & Related papers (2024-07-19T01:59:00Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Privacy-Preserving Face Recognition Using Trainable Feature Subtraction [40.47645421424354]
Face recognition has led to increasing privacy concerns.
This paper explores face image protection against viewing and recovery attacks.
We distill our methodologies into a novel privacy-preserving face recognition method, MinusFace.
arXiv Detail & Related papers (2024-03-19T05:27:52Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
We name it PRO-Face S, short for Privacy-preserving Reversible Obfuscation of Face images via Secure flow-based model.
In the framework, an Invertible Neural Network (INN) is utilized to process the input image along with its pre-obfuscated form, and generate the privacy protected image that visually approximates to the pre-obfuscated one.
arXiv Detail & Related papers (2023-07-18T10:55:54Z) - CLIP2Protect: Protecting Facial Privacy using Text-Guided Makeup via
Adversarial Latent Search [10.16904417057085]
Deep learning based face recognition systems can enable unauthorized tracking of users in the digital world.
Existing methods for enhancing privacy fail to generate naturalistic images that can protect facial privacy without compromising user experience.
We propose a novel two-step approach for facial privacy protection that relies on finding adversarial latent codes in the low-dimensional manifold of a pretrained generative model.
arXiv Detail & Related papers (2023-06-16T17:58:15Z) - DiffProtect: Generate Adversarial Examples with Diffusion Models for
Facial Privacy Protection [64.77548539959501]
DiffProtect produces more natural-looking encrypted images than state-of-the-art methods.
It achieves significantly higher attack success rates, e.g., 24.5% and 25.1% absolute improvements on the CelebA-HQ and FFHQ datasets.
arXiv Detail & Related papers (2023-05-23T02:45:49Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
We investigate the face privacy protection from a technology standpoint based on a new type of customized cloak.
We propose a new method, named one person one mask (OPOM), to generate person-specific (class-wise) universal masks.
The effectiveness of the proposed method is evaluated on both common and celebrity datasets.
arXiv Detail & Related papers (2022-05-24T11:29:37Z) - Protecting Facial Privacy: Generating Adversarial Identity Masks via
Style-robust Makeup Transfer [24.25863892897547]
adversarial makeup transfer GAN (AMT-GAN) is a novel face protection method aiming at constructing adversarial face images.
In this paper, we introduce a new regularization module along with a joint training strategy to reconcile the conflicts between the adversarial noises and the cycle consistence loss in makeup transfer.
arXiv Detail & Related papers (2022-03-07T03:56:17Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.