論文の概要: FedLAD: A Linear Algebra Based Data Poisoning Defence for Federated Learning
- arxiv url: http://arxiv.org/abs/2508.02136v1
- Date: Mon, 04 Aug 2025 07:34:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.226438
- Title: FedLAD: A Linear Algebra Based Data Poisoning Defence for Federated Learning
- Title(参考訳): FedLAD: 線形代数に基づくフェデレーション学習のためのデータポジショニング防衛
- Authors: Qi Xiong, Hai Dong, Nasrin Sohrabi, Zahir Tari,
- Abstract要約: Sybil攻撃は、悪意のあるノードが協力して多数を獲得できるため、連合学習に重大な脅威となる。
FedLAD(Linear Algebra-based Detection)と呼ばれる標的データ中毒に対する新しい防御法を提案する。
FedLADは、連合学習集約プロセスを線形問題としてモデル化し、線形代数最適化問題に変換する。
- 参考スコア(独自算出の注目度): 5.435215390769932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sybil attacks pose a significant threat to federated learning, as malicious nodes can collaborate and gain a majority, thereby overwhelming the system. Therefore, it is essential to develop countermeasures that ensure the security of federated learning environments. We present a novel defence method against targeted data poisoning, which is one of the types of Sybil attacks, called Linear Algebra-based Detection (FedLAD). Unlike existing approaches, such as clustering and robust training, which struggle in situations where malicious nodes dominate, FedLAD models the federated learning aggregation process as a linear problem, transforming it into a linear algebra optimisation challenge. This method identifies potential attacks by extracting the independent linear combinations from the original linear combinations, effectively filtering out redundant and malicious elements. Extensive experimental evaluations demonstrate the effectiveness of FedLAD compared to five well-established defence methods: Sherpa, CONTRA, Median, Trimmed Mean, and Krum. Using tasks from both image classification and natural language processing, our experiments confirm that FedLAD is robust and not dependent on specific application settings. The results indicate that FedLAD effectively protects federated learning systems across a broad spectrum of malicious node ratios. Compared to baseline defence methods, FedLAD maintains a low attack success rate for malicious nodes when their ratio ranges from 0.2 to 0.8. Additionally, it preserves high model accuracy when the malicious node ratio is between 0.2 and 0.5. These findings underscore FedLAD's potential to enhance both the reliability and performance of federated learning systems in the face of data poisoning attacks.
- Abstract(参考訳): Sybilアタックは、悪意のあるノードが協力して多数派を獲得し、システムを追い越すことができるため、フェデレーションドラーニングに重大な脅威となる。
そのため,連合型学習環境の安全性を確保するための対策を開発することが不可欠である。
本稿では,Linear Algebra-based Detection (FedLAD) と呼ばれる,Sybil攻撃の一種である標的データ中毒に対する新しい防御法を提案する。
悪意のあるノードが支配する状況で苦労するクラスタリングやロバストトレーニングのような既存のアプローチとは異なり、FedLADは、連合学習集約プロセスを線形問題としてモデル化し、線形代数最適化問題に変換する。
この方法は、元の線形結合から独立した線形結合を抽出し、効果的に冗長な要素と悪意のある要素をフィルタリングすることで潜在的な攻撃を識別する。
FedLADの有効性は,Sherpa,CONTRA,Median,Trimmed Mean,Krumの5つの防御方法と比較した。
画像分類と自然言語処理の両方のタスクを用いて、FedLADは堅牢であり、特定のアプリケーション設定に依存しないことを確認した。
その結果,FedLADは有害ノード比の広い範囲にわたるフェデレーション学習システムを効果的に保護していることが示唆された。
ベースライン防御法と比較して、FedLADは0.2から0.8の範囲で悪意のあるノードに対する攻撃成功率を低く保っている。
さらに、悪意のあるノード比が0.2から0.5の場合に高いモデル精度を維持する。
これらの知見は、フェデラル・ラーニング・システムの信頼性と性能を高めるためのフェデラル・ラーニング・システムの可能性を強調している。
関連論文リスト
- Robust Federated Learning Against Poisoning Attacks: A GAN-Based Defense Framework [0.6554326244334868]
フェデレートラーニング(FL)は、生データを共有せずに、分散デバイス間で協調的なモデルトレーニングを可能にする。
本稿では,クライアントの更新を認証するために,CGAN(Conditional Generative Adversarial Network)を利用してサーバで合成データを生成する,プライバシ保護型防衛フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-26T18:00:56Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
大規模言語モデル(LLM)は、安全ガードレールをバイパスできる敵攻撃に対して脆弱である。
本稿では,2つの損失からなる高速対向訓練アルゴリズム(C-AdvUL)を提案する。
C-AdvIPOは、対向的に堅牢なアライメントのためのユーティリティデータを必要としない、対向型のIPOである。
論文 参考訳(メタデータ) (2024-05-24T14:20:09Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning(FL)は、分散デバイスやデータソースのモデルトレーニングを可能にする、新興の機械学習アプローチである。
我々は、Fed-Creditと呼ばれる信頼性管理手法に基づく堅牢なFLアプローチを提案する。
その結果、比較的低い計算複雑性を維持しながら、敵攻撃に対する精度とレジリエンスが向上した。
論文 参考訳(メタデータ) (2024-05-20T03:35:13Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
フェデレートラーニング(Federated Learning)は、プライバシの問題に対処するために設計された分散フレームワークである。
新たなアタックサーフェスを導入しており、データは独立に、そしてIdentically Distributedである場合、特に困難である。
我々は,モデル中毒に対する簡易かつ効果的な新しい防御アルゴリズムであるFedCCを提案する。
論文 参考訳(メタデータ) (2022-12-05T01:52:32Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - Mitigating the Impact of Adversarial Attacks in Very Deep Networks [10.555822166916705]
Deep Neural Network (DNN)モデルにはセキュリティに関する脆弱性がある。
データ中毒による摂動攻撃は、モデルに偽データを注入する複雑な敵対攻撃である。
そこで本研究では,攻撃に依存しない防御手法を提案する。
論文 参考訳(メタデータ) (2020-12-08T21:25:44Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。