論文の概要: Reconsidering Overthinking: Penalizing Internal and External Redundancy in CoT Reasoning
- arxiv url: http://arxiv.org/abs/2508.02178v1
- Date: Mon, 04 Aug 2025 08:22:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.247096
- Title: Reconsidering Overthinking: Penalizing Internal and External Redundancy in CoT Reasoning
- Title(参考訳): 再考:CoT推論における内部および外部冗長性について
- Authors: Jialiang Hong, Taihang Zhen, Kai Chen, Jiaheng Liu, Wenpeng Zhu, Jing Huo, Yang Gao, Depeng Wang, Haitao Wan, Xi Yang, Boyan Wang, Fanyu Meng,
- Abstract要約: 大きな推論モデル(LRM)は、しばしば冗長な推論トレースを生成する。
本稿では、過度な思考を緩和する双対費用強化学習フレームワークを提案する。
提案手法は,最小の精度で推理トレースを圧縮する。
- 参考スコア(独自算出の注目度): 25.257339021921055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Reasoning Models (LRMs) often produce excessively verbose reasoning traces, a phenomenon known as overthinking, which hampers both efficiency and interpretability. Prior works primarily address this issue by reducing response length, without fully examining the underlying semantic structure of the reasoning process. In this paper, we revisit overthinking by decomposing it into two distinct forms: internal redundancy, which consists of low-contribution reasoning steps within the first correct solution (FCS), and external redundancy, which refers to unnecessary continuation after the FCS. To mitigate both forms, we propose a dual-penalty reinforcement learning framework. For internal redundancy, we adopt a sliding-window semantic analysis to penalize low-gain reasoning steps that contribute little toward reaching the correct answer. For external redundancy, we penalize its proportion beyond the FCS to encourage earlier termination. Our method significantly compresses reasoning traces with minimal accuracy loss, and generalizes effectively to out-of-domain tasks such as question answering and code generation. Crucially, we find that external redundancy can be safely removed without degrading performance, whereas internal redundancy must be reduced more cautiously to avoid impairing correctness. These findings suggest that our method not only improves reasoning efficiency but also enables implicit, semantic-aware control over Chain-of-Thought length, paving the way for more concise and interpretable LRMs.
- Abstract(参考訳): 大きな推論モデル(LRMs)は、しばしば過度に冗長な推論のトレースを生成する。
先行研究は、推論プロセスの基盤となる意味構造を完全に調べることなく、応答長を減少させることでこの問題に対処する。
本稿では, 内的冗長性 (内的冗長性) と外的冗長性 (外的冗長性) という, 内的冗長性 (内的冗長性) を, 内的冗長性 (内的冗長性) と外的冗長性 (外的冗長性) に分解して再考する。
両形態を緩和するために,双極小強化学習フレームワークを提案する。
内部冗長性については,解答にはほとんど寄与しない低利得推論ステップをペナルティ化するために,スライディングウインドウのセマンティック解析を採用する。
外部冗長性については,早期終了を促すため,FISを超える割合を罰する。
提案手法は,最小限の精度で推論トレースを圧縮し,質問応答やコード生成などの領域外タスクに効果的に一般化する。
重要なことは、内部冗長性は、性能を低下させることなく安全に除去できるのに対し、内部冗長性は、正確性を損なうのを避けるために、より慎重に低減する必要がある。
これらの結果から,提案手法は推論効率を向上するだけでなく,チェーン・オブ・ソート長に対する暗黙的意味認識制御を可能にし,より簡潔かつ解釈可能なLEMの道を開いたことが示唆された。
関連論文リスト
- Does More Inference-Time Compute Really Help Robustness? [50.47666612618054]
小規模なオープンソースモデルは、推論時間スケーリングの恩恵を受けることができることを示す。
我々は、逆スケーリング法として、直感的に動機付けられ、実証的に検証された重要なセキュリティリスクを特定します。
私たちは、セキュリティに敏感で現実世界のアプリケーションに推論タイムのスケーリングを適用する前に、実践者にこれらの微妙なトレードオフを慎重に検討するよう促します。
論文 参考訳(メタデータ) (2025-07-21T18:08:38Z) - SmartThinker: Learning to Compress and Preserve Reasoning by Step-Level Length Control [5.224609066309358]
大規模な推論モデル(LRM)は、推論時間スケーリングを通じて顕著な推論能力を示した。
従来の研究は、強化学習中に生成されたサンプル全体の長さをペナルティ化することでこの問題を緩和しようと試みてきた。
We propose SmartThinker, a two-stage learnable framework designed to enable fine-fine control over the length of reasoning chains。
論文 参考訳(メタデータ) (2025-07-06T11:21:47Z) - Is Long-to-Short a Free Lunch? Investigating Inconsistency and Reasoning Efficiency in LRMs [8.359909829007005]
大規模推論モデル(LRM)において,効率的な推論手法が行動の不整合をもたらすかどうかを検討する。
$ICBENCH$は、3次元にわたるLRMの不整合を測定するために設計されたベンチマークである。
より大きなモデルは一般的に小さなモデルよりも一貫性が高いが、すべてのモデルが広く「計画的」な振る舞いを示す。
論文 参考訳(メタデータ) (2025-06-24T10:25:28Z) - ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation [53.149817480019834]
大規模推論モデル(LRM)の最近の進歩は、チェーン・オブ・ソート(CoT)による生成長のスケールアップにより、複雑な推論タスクにおける顕著な性能向上を実現している。
本稿では,推論過程のトークン生成中にテキストヒントを注入することにより,推論モデルに簡潔な発話を促すフレームワークであるConciseHintを提案する。
DeepSeek-R1 や Qwen-3 シリーズを含む最先端の LRM 実験により,本手法は性能を良好に保ちながら簡潔な推論過程を効果的に生成できることが実証された。
論文 参考訳(メタデータ) (2025-06-23T16:20:44Z) - Think Clearly: Improving Reasoning via Redundant Token Pruning [57.01254508252785]
推論過程における冗長性を意図的に除去することで、性能が大幅に向上することを示す。
本手法は, 推論集約型ベンチマークにおいて, トレーニングを伴わずに, 全体的な精度を著しく向上することを示した。
論文 参考訳(メタデータ) (2025-06-17T06:04:01Z) - ThinkLess: A Training-Free Inference-Efficient Method for Reducing Reasoning Redundancy [8.962703809086628]
ThinkLessは推論効率のよいフレームワークで、推論生成を早期に終了し、モデルを変更することなく出力品質を維持する。
我々はThinkLessが完全長のChain-of-Thought(CoT)デコードに匹敵する精度を実現し,デコード時間とメモリ消費を大幅に削減することを示した。
論文 参考訳(メタデータ) (2025-05-21T15:58:16Z) - Let LLMs Break Free from Overthinking via Self-Braking Tuning [60.08396797526657]
大きな推論モデル(LRM)は思考の長い連鎖を生成することによって推論能力を著しく向上させた。
この性能向上は、生成プロセス中の冗長な推論を大幅に増加させるコストが伴う。
本稿では、モデルが独自の推論プロセスを制御することを許容する観点から、過度に検討する新しいフレームワーク、Self-Braking Tuning(SBT)を提案する。
論文 参考訳(メタデータ) (2025-05-20T16:53:40Z) - ConCISE: Confidence-guided Compression in Step-by-step Efficient Reasoning [75.1101108949743]
大規模推論モデル(LRM)は、Chain-of-Thought (CoT)プロンプトを介して複雑な推論タスクを強く行う。
LRMは冗長なコンテンツによる冗長なアウトプット、計算オーバーヘッドの増加、ユーザエクスペリエンスの低下に悩まされることが多い。
本稿では,推論中のモデルの信頼性を高めることによって推論チェーンを簡素化するフレームワークであるConCISEを提案する。
論文 参考訳(メタデータ) (2025-05-08T01:40:40Z) - To Think or Not to Think: Exploring the Unthinking Vulnerability in Large Reasoning Models [56.19026073319406]
大規模推論モデル (LRM) は、最終的な答えを生成する前に明確な推論トレースを生成することで複雑なタスクを解決するように設計されている。
LRM(Unthinking)と呼ばれる重要な脆弱性を明らかにし、特別なトークンを操作することで思考プロセスを回避できます。
本稿では,この脆弱性を悪意と有益の両方の観点から検討する。
論文 参考訳(メタデータ) (2025-02-16T10:45:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。