論文の概要: CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation
- arxiv url: http://arxiv.org/abs/2508.02184v1
- Date: Mon, 04 Aug 2025 08:28:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.251014
- Title: CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation
- Title(参考訳): CAAD:真のテキスト生成のためのコンテキスト対応適応デコーディング
- Authors: Manh Nguyen, Sunil Gupta, Hung Le,
- Abstract要約: 大規模言語モデルに対する文脈対応適応型復号法を提案する。
当社のアプローチは、TrathfulQAで平均2.8%の改善を実現しています。
モデルに依存しない,スケーラブルで,効率的な手法では,1世代パスしか必要としない。
- 参考スコア(独自算出の注目度): 31.469511576774252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring truthfulness in large language models remains a critical challenge for reliable text generation. While supervised fine-tuning and reinforcement learning with human feedback have shown promise, they require substantial amount of annotated data and computational resources, limiting scalability. In contrast, decoding-time interventions offer lightweight alternatives without model retraining. However, existing decoding strategies often face issues like prompt sensitivity, limited generalization, or dependence on internal model states. We propose a context-aware adaptive decoding method that leverages a compact reference grounding space, built from as few as 10 annotated examples and comprising pairs of context embeddings and next token logits from truthful responses, to enable retrieval-based logit shaping during inference. At each decoding step, our method retrieves top-N semantically similar contexts and aggregates their associated next token logits to modify the LLM's logits. Across three open-ended question-answering benchmarks, our approach achieves a 2.8 percent average improvement on TruthfulQA and further outperforms existing baselines on both Biographies and WikiQA. Experimental results also demonstrate cross-task generalization, with TruthfulQA-derived grounding enhancing biography generation. Our model-agnostic, scalable, and efficient method requires only a single generation pass, highlighting the potential of context-aware decoding for factual reliability in LLMs.
- Abstract(参考訳): 大規模言語モデルにおける真性を保証することは、信頼できるテキスト生成にとって重要な課題である。
教師付き微調整と人間からのフィードバックによる強化学習は有望であるが、相当量の注釈付きデータと計算資源が必要であり、スケーラビリティが制限されている。
対照的に、デコード時の介入は、モデルの再トレーニングなしに軽量な代替手段を提供する。
しかし、既存の復号化戦略はしばしば、迅速な感度、限定的な一般化、内部モデル状態への依存といった問題に直面している。
本稿では,10個の注釈付き例から構築したコンパクトな参照接地空間を利用して,真理応答からのコンテキスト埋め込みと次のトークンロジットからなる文脈適応型適応復号法を提案し,推論中に検索ベースのロジット整形を可能にする。
各デコーディングステップでは,トップNのセマンティックなコンテキストを検索し,関連する次のトークンのログを集約してLLMのログを変更する。
3つのオープンな質問回答ベンチマークで、我々のアプローチはTrathfulQAの2.8%の平均的な改善を実現し、さらにBiographiesとWikiQAの既存のベースラインを上回ります。
また、TruthfulQA由来のグラウンドリングによるバイオグラフィー生成によるクロスタスクの一般化を実証した。
モデルに依存しない,スケーラブルで,効率的な手法では,単一の世代パスしか必要とせず,LCMにおける現実的信頼性のためのコンテキスト認識デコーディングの可能性を強調している。
関連論文リスト
- ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models [67.75439511654078]
LVLM(Large Vision-Language Models)は、テキスト応答による画像入力の理解と推論のための新しいパラダイムを導入している。
彼らは幻覚という永続的な課題に直面しており、現実のアプリケーションに信頼性のあるデプロイを行うことについて懸念を抱き、実践的な弱点をもたらしている。
OnLYは,1つのクエリと1層の介入しか必要とせず,効率的なリアルタイムデプロイメントを実現するためのトレーニング不要なデコーディング手法である。
論文 参考訳(メタデータ) (2025-07-01T16:01:08Z) - CAMeL: Cross-modality Adaptive Meta-Learning for Text-based Person Retrieval [22.01591564940522]
モデル一般化能力を高めるために,クロスモーダル適応メタラーニング(CAMeL)に基づくドメインに依存しない事前学習フレームワークを提案する。
特に,現実シナリオの多様性と複雑さを反映した一連のタスクを開発する。
提案手法は,実世界のベンチマークにおける既存手法を超越するだけでなく,ロバスト性やスケーラビリティも示す。
論文 参考訳(メタデータ) (2025-04-26T03:26:30Z) - PICASO: Permutation-Invariant Context Composition with State Space Models [98.91198288025117]
State Space Models (SSM) は、コンテキストのデータベースを固定次元の状態にマッピング可能にすることで、有望なソリューションを提供する。
本研究では,SSM力学から導かれる単純な数学的関係を,生のコンテキストトークンの連結効果を効率的に近似する複数の状態に構成する。
我々は,WikiText と MSMARCO をゼロショットと微調整の両方で評価し,平均5.4倍のスピードアップを楽しみながら最強の演奏ベースラインと一致できることを示す。
論文 参考訳(メタデータ) (2025-02-24T19:48:00Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - Context-DPO: Aligning Language Models for Context-Faithfulness [80.62221491884353]
本研究では,大規模言語モデルの文脈信頼度を高めるためのアライメント手法を提案する。
ConFiQAから提供されたコンテキストの質問に対する忠実で頑健な応答を活用することで、Context-DPOは直接の選好最適化を通じてLLMを調整します。
大規模な実験により、私たちのContext-DPOは、一般的なオープンソースモデルで35%から280%の改善を達成し、コンテキスト忠実性を大幅に改善します。
論文 参考訳(メタデータ) (2024-12-18T04:08:18Z) - Mind the Gap: A Generalized Approach for Cross-Modal Embedding Alignment [0.0]
Retrieval-Augmented Generation (RAG) システムは、意味的ギャップによって異なるテキストモダリティ間でコンテキストを検索する。
本稿では,これらのギャップを効率的に埋める汎用投影法を提案する。
私たちのアプローチでは、トレーニングや推論に最小限のリソースを必要とするため、スピード、正確性、データ効率を重視しています。
論文 参考訳(メタデータ) (2024-10-30T20:28:10Z) - Localizing Factual Inconsistencies in Attributable Text Generation [91.981439746404]
本稿では,帰属可能なテキスト生成における事実の不整合をローカライズするための新しい形式であるQASemConsistencyを紹介する。
まず,人間のアノテーションに対するQASemConsistency法の有効性を示す。
そこで我々は,局所的な事実の不整合を自動的に検出するいくつかの手法を実装した。
論文 参考訳(メタデータ) (2024-10-09T22:53:48Z) - Bridging Context Gaps: Leveraging Coreference Resolution for Long Contextual Understanding [28.191029786204624]
大規模言語モデル(LLM)の性能向上を目的としたLong Question Coreference Adaptation (LQCA) 手法を提案する。
このフレームワークは、長いコンテキストに合わせて調整されたコア参照解決に焦点を当てており、モデルが参照を効果的に識別し、管理することができる。
私たちのコードはhttps://github.com/OceannTwT/LQCA.comで公開されています。
論文 参考訳(メタデータ) (2024-10-02T15:39:55Z) - Enhancing Contextual Understanding in Large Language Models through Contrastive Decoding [9.2433070542025]
大規模言語モデル(LLM)は、テキスト生成時に入力コンテキストを不適切に統合する傾向がある。
本稿では, 逆無関係なパスを負のサンプルとして, コントラストデコーディングを統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-04T20:38:41Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。