Proof2Hybrid: Automatic Mathematical Benchmark Synthesis for Proof-Centric Problems
- URL: http://arxiv.org/abs/2508.02208v2
- Date: Tue, 05 Aug 2025 14:01:00 GMT
- Title: Proof2Hybrid: Automatic Mathematical Benchmark Synthesis for Proof-Centric Problems
- Authors: Yebo Peng, Zixiang Liu, Yaoming Li, Zhizhuo Yang, Xinye Xu, Bowen Ye, Weijun Yuan, Zihan Wang, Tong Yang,
- Abstract summary: We propose Proof2Hybrid, a framework that synthesizes high-quality, proof-centric benchmarks from natural language mathematical corpora.<n>Our framework and benchmark pave the way for a new wave of in-depth research into the mathematical intelligence of AI systems.
- Score: 9.041749463376599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating the mathematical capability of Large Language Models (LLMs) is a critical yet challenging frontier. Existing benchmarks fall short, particularly for proof-centric problems, as manual creation is unscalable and costly, leaving the true mathematical abilities of LLMs largely unassessed. To overcome these barriers, we propose Proof2Hybrid, the first fully automated framework that synthesizes high-quality, proof-centric benchmarks from natural language mathematical corpora. The key novelty of our solution is Proof2X, a roadmap of converting mathematical proofs into various kinds of questions that are easy to verify. Instructed by this roadmap, we propose a new type of hybrid-formatted questions, named ``$m$-out-of-$n$ multiple judge questions'', specifically designed to enable robust, automatic evaluation while being resilient to guessing and superficial pattern matching inherent in traditional formats. As a demonstration of our framework, we introduce AlgGeoTest, a benchmark for algebraic geometry--a frontier domain of modern mathematics--comprising 456 challenging items. Our extensive evaluations on state-of-the-art LLMs using AlgGeoTest reveal profound deficits in their comprehension of algebraic geometry, providing a more precise measure of their true mathematical capabilities. Our framework and benchmark pave the way for a new wave of in-depth research into the mathematical intelligence of AI systems.
Related papers
- RealMath: A Continuous Benchmark for Evaluating Language Models on Research-Level Mathematics [21.453837660747844]
Existing benchmarks for evaluating mathematical reasoning in large language models (LLMs) rely primarily on competition problems, formal proofs, or artificially challenging questions.<n>We introduce RealMath, a novel benchmark derived directly from research papers and mathematical forums that assesses LLMs' abilities on authentic mathematical tasks.
arXiv Detail & Related papers (2025-05-18T23:32:46Z) - Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models [86.45058529521258]
OlymMATH is a novel Olympiad-level mathematical benchmark designed to rigorously test the complex reasoning capabilities of LLMs.<n>OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions.
arXiv Detail & Related papers (2025-03-27T11:20:17Z) - PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models [59.920971312822736]
We introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems.<n>The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction.<n>Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods.
arXiv Detail & Related papers (2025-03-04T06:32:30Z) - MathConstruct: Challenging LLM Reasoning with Constructive Proofs [0.9320657506524149]
mc is a new benchmark of 126 challenging problems sourced from various math competitions.<n>mc is suitable for Large Language Models evaluation, as solution correctness can be easily verified.
arXiv Detail & Related papers (2025-02-14T14:44:22Z) - FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI [2.0608396919601493]
FrontierMath is a benchmark of hundreds of original, exceptionally challenging mathematics problems crafted and vetted by expert mathematicians.<n>Current state-of-the-art AI models solve under 2% of problems, revealing a vast gap between AI capabilities and the prowess of the mathematical community.<n>As AI systems advance toward expert-level mathematical abilities, FrontierMath offers a rigorous testbed that quantifies their progress.
arXiv Detail & Related papers (2024-11-07T17:07:35Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBench is a new benchmark that rigorously assesses the mathematical capabilities of large language models.
MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills.
arXiv Detail & Related papers (2024-05-20T17:52:29Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - UniGeo: Unifying Geometry Logical Reasoning via Reformulating
Mathematical Expression [127.68780714438103]
Two main geometry problems: calculation and proving, are usually treated as two specific tasks.
We construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems.
We also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously.
arXiv Detail & Related papers (2022-12-06T04:37:51Z) - GeoQA: A Geometric Question Answering Benchmark Towards Multimodal
Numerical Reasoning [172.36214872466707]
We focus on solving geometric problems, which requires a comprehensive understanding of textual descriptions, visual diagrams, and theorem knowledge.
We propose a Geometric Question Answering dataset GeoQA, containing 5,010 geometric problems with corresponding annotated programs.
arXiv Detail & Related papers (2021-05-30T12:34:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.