論文の概要: Semi-Supervised Dual-Threshold Contrastive Learning for Ultrasound Image Classification and Segmentation
- arxiv url: http://arxiv.org/abs/2508.02265v1
- Date: Mon, 04 Aug 2025 10:15:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.287334
- Title: Semi-Supervised Dual-Threshold Contrastive Learning for Ultrasound Image Classification and Segmentation
- Title(参考訳): 超音波画像分類とセグメンテーションのための半教師付きデュアル閾値コントラスト学習
- Authors: Peng Zhang, Zhihui Lai, Heng Kong,
- Abstract要約: 本稿では,Hermes という超音波画像分類とセグメンテーションのための,新しい半教師付き2次元コントラスト学習手法を提案する。
具体的には、セグメンテーションと分類タスク間の情報共有を容易にするために、タスク間注意・衛生モジュールも開発されている。
- 参考スコア(独自算出の注目度): 21.989292901973567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Confidence-based pseudo-label selection usually generates overly confident yet incorrect predictions, due to the early misleadingness of model and overfitting inaccurate pseudo-labels in the learning process, which heavily degrades the performance of semi-supervised contrastive learning. Moreover, segmentation and classification tasks are treated independently and the affinity fails to be fully explored. To address these issues, we propose a novel semi-supervised dual-threshold contrastive learning strategy for ultrasound image classification and segmentation, named Hermes. This strategy combines the strengths of contrastive learning with semi-supervised learning, where the pseudo-labels assist contrastive learning by providing additional guidance. Specifically, an inter-task attention and saliency module is also developed to facilitate information sharing between the segmentation and classification tasks. Furthermore, an inter-task consistency learning strategy is designed to align tumor features across both tasks, avoiding negative transfer for reducing features discrepancy. To solve the lack of publicly available ultrasound datasets, we have collected the SZ-TUS dataset, a thyroid ultrasound image dataset. Extensive experiments on two public ultrasound datasets and one private dataset demonstrate that Hermes consistently outperforms several state-of-the-art methods across various semi-supervised settings.
- Abstract(参考訳): 信頼に基づく疑似ラベル選択は、モデルの初期誤解を招き、学習過程において不正確な擬似ラベルを過度に適合させ、半教師付きコントラスト学習の性能を著しく低下させるため、通常、過度に自信を持って不正確な予測を生成する。
さらに, セグメンテーションと分類タスクは独立に扱われ, 親和性は十分に調べられていない。
これらの課題に対処するために,Hermes という名前の超音波画像分類とセグメンテーションのための,半教師付き2次元コントラスト学習戦略を提案する。
この戦略は、コントラスト学習の強みと半教師付き学習を組み合わせ、擬似ラベルは追加のガイダンスを提供することでコントラスト学習を支援する。
具体的には、セグメンテーションと分類タスク間の情報共有を容易にするために、タスク間注意・衛生モジュールも開発されている。
さらに、タスク間の整合性学習戦略は、両方のタスクにまたがって腫瘍の特徴を整列させ、ネガティブな伝達を回避し、特徴の相違を低減させるように設計されている。
一般用超音波データセットの欠如を解決するため,甲状腺超音波画像データセットであるSZ-TUSデータセットを収集した。
2つの公開超音波データセットと1つのプライベートデータセットに関する大規模な実験により、Hermesは、さまざまな半教師付き設定で、一貫して最先端のメソッドを上回ります。
関連論文リスト
- HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation [2.964206587462833]
HDCと呼ばれる新しい半教師付きセグメンテーションフレームワークが提案されている。
この枠組みは,特徴表現の整合化のための相関誘導損失と,雑音の多い学生学習を安定化するための相互情報損失の2つの目的を持つ階層的蒸留機構を導入している。
論文 参考訳(メタデータ) (2025-04-14T04:52:24Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Deep Semi-supervised Learning with Double-Contrast of Features and
Semantics [2.2230089845369094]
本稿では,エンド・ツー・エンドの半教師あり学習における意味と特徴の二重コントラストを提案する。
我々は情報理論を活用し、意味論と特徴の二重コントラストの合理性を説明する。
論文 参考訳(メタデータ) (2022-11-28T09:08:19Z) - Consistency-Based Semi-supervised Evidential Active Learning for
Diagnostic Radiograph Classification [2.3545156585418328]
CSEAL(Consistency-based Semi-supervised Evidential Active Learning)フレームワークについて紹介する。
我々は、証拠理論と主観的論理に基づく予測の不確実性を利用して、エンドツーエンドの統合アプローチを開発する。
本手法は, ラベル付きサンプルを少なくして, より稀な異常の精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-09-05T09:28:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
医用画像セグメンテーションのための新しい不確実性誘導相互整合学習フレームワークを提案する。
タスクレベルの正規化によるタスク内一貫性学習と、タスク間の整合性学習を統合して、幾何学的な形状情報を活用する。
本手法は,ラベルのないデータを活用し,既存の半教師付きセグメンテーション法より優れた性能を実現する。
論文 参考訳(メタデータ) (2021-12-05T08:19:41Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z) - Deep Semi-supervised Metric Learning with Dual Alignment for Cervical
Cancer Cell Detection [49.78612417406883]
子宮頸癌細胞検出のための新しい半教師付き深度測定法を提案する。
私たちのモデルは、埋め込みメトリック空間を学習し、提案レベルとプロトタイプレベルの両方でセマンティック機能の二重アライメントを行います。
本研究は,240,860個の頸部細胞画像からなる半監督型頸部がん細胞検出のための大規模データセットを初めて構築した。
論文 参考訳(メタデータ) (2021-04-07T17:11:27Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。