CAMERA: Multi-Matrix Joint Compression for MoE Models via Micro-Expert Redundancy Analysis
- URL: http://arxiv.org/abs/2508.02322v1
- Date: Mon, 04 Aug 2025 11:42:48 GMT
- Title: CAMERA: Multi-Matrix Joint Compression for MoE Models via Micro-Expert Redundancy Analysis
- Authors: Yuzhuang Xu, Xu Han, Yuanchi Zhang, Yixuan Wang, Yijun Liu, Shiyu Ji, Qingfu Zhu, Wanxiang Che,
- Abstract summary: Large Language Models with Mixture-of-Experts (MoE) suffer from substantial computational and storage overheads.<n>We introduce micro-expert as a finer-grained compression unit that spans across matrices.<n>We propose CAMERA-P, a structured micro-expert pruning framework, and CAMERA-Q, a mixed-precision quantization idea designed for micro-experts.
- Score: 51.27304044745634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) with Mixture-of-Experts (MoE) architectures are distinguished by their strong performance scaling with increasing parameters across a wide range of tasks, yet they also suffer from substantial computational and storage overheads. Notably, the performance gains of MoE models do not scale proportionally with the growth in expert parameters. While prior works attempt to reduce parameters via expert-level pruning, merging, or decomposition, they still suffer from challenges in both performance and computational efficiency. In this paper, we address these challenges by introducing micro-expert as a finer-grained compression unit that spans across matrices. We first establish a more fundamental perspective, viewing MoE layers as mixtures of micro-experts, and present CAMERA, a lightweight and training-free framework for identifying micro-expert redundancy. Our analysis uncovers significant variance in micro-expert contributions during decoding. Based on this insight, we further propose CAMERA-P, a structured micro-expert pruning framework, and CAMERA-Q, a mixed-precision quantization idea designed for micro-experts. Extensive experiments on nine downstream tasks show that CAMERA-P consistently outperforms strong baselines under pruning ratios ranging from 20% to 60%. Furthermore, CAMERA-Q achieves superior results under aggressive 2-bit quantization, surpassing existing matrix- and channel-level ideas. Notably, our method enables complete micro-expert analysis of Qwen2-57B-A14B in less than 5 minutes on a single NVIDIA A100-40GB GPU.
Related papers
- HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - MoE-I$^2$: Compressing Mixture of Experts Models through Inter-Expert Pruning and Intra-Expert Low-Rank Decomposition [32.97035551579975]
We introduce a two-stage compression method tailored for MoE to reduce the model size and decrease the computational cost.
Experiments on Qwen1.5-MoE-A2.7B, DeepSeek-V2-Lite, and Mixtral-8$times$7B demonstrate that our proposed methods can both reduce the model size and enhance inference efficiency.
arXiv Detail & Related papers (2024-11-01T20:37:58Z) - Mixture Compressor for Mixture-of-Experts LLMs Gains More [71.0473038084673]
We propose a training-free Mixture-Compressor for Mixture-of-Experts large language models (MoE-LLMs)<n>Our MC integrates static quantization and dynamic pruning to collaboratively achieve extreme compression for MoE-LLMs with less accuracy loss.<n>For instance, at 2.54 bits, MC compresses 76.6% of the model, with only a 3.8% average accuracy loss.
arXiv Detail & Related papers (2024-10-08T18:09:38Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.<n>We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.<n>The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Mixture of A Million Experts [1.240096657086732]
This paper introduces PEER, a novel layer design that utilizes the product key technique for sparse retrieval from a vast pool of experts.
Experiments on language modeling tasks demonstrate that PEER layers outperform dense FFWs and coarse-grained MoEs in terms of performance-compute trade-off.
arXiv Detail & Related papers (2024-07-04T20:59:20Z) - Efficient Expert Pruning for Sparse Mixture-of-Experts Language Models: Enhancing Performance and Reducing Inference Costs [30.07344792770254]
We introduce a gradient-free evolutionary strategy named EEP (Efficient Expert Pruning) to enhance the pruning of experts in SMoE models.
EEP relies solely on model inference (i.e., no gradient computation) and greater sparsity while maintaining or even improving performance on downstream tasks.
We demonstrate that pruning up to 75% of experts in Mixtral $8times7$B-Instruct results in a substantial reduction in parameters with minimal performance loss.
arXiv Detail & Related papers (2024-07-01T03:57:35Z) - A Provably Effective Method for Pruning Experts in Fine-tuned Sparse Mixture-of-Experts [49.394145046409044]
This paper provides the first provably efficient technique for pruning experts in finetuned MoE models.
We theoretically prove that prioritizing the pruning of the experts with a smaller change of the routers l2 norm from the pretrained model guarantees the preservation of test accuracy.
Although our theoretical analysis is centered on binary classification tasks on simplified MoE architecture, our expert pruning method is verified on large vision MoE models.
arXiv Detail & Related papers (2024-05-26T17:52:58Z) - Mixture of Quantized Experts (MoQE): Complementary Effect of Low-bit
Quantization and Robustness [10.196942053244468]
Large Mixture of Experts (MoE) models could achieve state-of-the-art quality on various language tasks.
MoQE is a simple weight-only quantization method applying ultra low-bit down to 2-bit quantizations only to expert weights.
We show that low-bit quantization together with the MoE architecture delivers a reliable model performance.
arXiv Detail & Related papers (2023-10-03T20:11:23Z) - Task-Specific Expert Pruning for Sparse Mixture-of-Experts [105.20605021416276]
Mixture-of-Experts (MoE) model is powerful for large-scale pre-training.
MoE is hard to be deployed on cloud or mobile environment.
We propose a general method to progressively drop the non-professional experts for the target downstream task.
arXiv Detail & Related papers (2022-06-01T07:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.