Uncertainty Estimation for Novel Views in Gaussian Splatting from Primitive-Based Representations of Error and Visibility
- URL: http://arxiv.org/abs/2508.02443v1
- Date: Mon, 04 Aug 2025 14:02:20 GMT
- Title: Uncertainty Estimation for Novel Views in Gaussian Splatting from Primitive-Based Representations of Error and Visibility
- Authors: Thomas Gottwald, Edgar Heinert, Matthias Rottmann,
- Abstract summary: We present a novel method for uncertainty estimation (UE) in Gaussian Splatting.<n>Our method establishes primitive representations of error and visibility of trainings views, which carries meaningful uncertainty information.<n>Our UEs show high correlations to true errors, outperforming state-of-the-art methods, especially on foreground objects.
- Score: 4.69726714177332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a novel method for uncertainty estimation (UE) in Gaussian Splatting. UE is crucial for using Gaussian Splatting in critical applications such as robotics and medicine. Previous methods typically estimate the variance of Gaussian primitives and use the rendering process to obtain pixel-wise uncertainties. Our method establishes primitive representations of error and visibility of trainings views, which carries meaningful uncertainty information. This representation is obtained by projection of training error and visibility onto the primitives. Uncertainties of novel views are obtained by rendering the primitive representations of uncertainty for those novel views, yielding uncertainty feature maps. To aggregate these uncertainty feature maps of novel views, we perform a pixel-wise regression on holdout data. In our experiments, we analyze the different components of our method, investigating various combinations of uncertainty feature maps and regression models. Furthermore, we considered the effect of separating splatting into foreground and background. Our UEs show high correlations to true errors, outperforming state-of-the-art methods, especially on foreground objects. The trained regression models show generalization capabilities to new scenes, allowing uncertainty estimation without the need for holdout data.
Related papers
- Bayesian generative models can flag performance loss, bias, and out-of-distribution image content [15.835055687646507]
Generative models are popular for medical imaging tasks such as anomaly detection, feature extraction, data visualization, or image generation.<n>Since they are parameterized by deep learning models, they are often sensitive to distribution shifts and unreliable when applied to out-of-distribution data.<n>We show how pixel-wise uncertainty can detect out-of-distribution image content such as ink, rulers, and patches.
arXiv Detail & Related papers (2025-03-21T18:45:28Z) - Predictive Uncertainty Quantification for Bird's Eye View Segmentation: A Benchmark and Novel Loss Function [10.193504550494486]
This paper introduces a benchmark for predictive uncertainty quantification in Bird's Eye View (BEV) segmentation.<n>Our study focuses on the effectiveness of quantified uncertainty in detecting misclassified and out-of-distribution pixels.<n>We propose a novel loss function, Uncertainty-Focal-Cross-Entropy (UFCE), specifically designed for highly imbalanced data.
arXiv Detail & Related papers (2024-05-31T16:32:46Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Poisson Reweighted Laplacian Uncertainty Sampling for Graph-based Active
Learning [1.6752182911522522]
We show that uncertainty sampling is sufficient to achieve exploration versus exploitation in graph-based active learning.
In particular, we use a recently developed algorithm, Poisson ReWeighted Laplace Learning (PWLL) for the classifier.
We present experimental results on a number of graph-based image classification problems.
arXiv Detail & Related papers (2022-10-27T22:07:53Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal
Estimation [25.003116148843525]
Surface normal estimation from a single image is an important task in 3D scene understanding.
In this paper, we address two limitations shared by the existing methods: the inability to estimate the aleatoric uncertainty and lack of detail in the prediction.
We present a novel decoder framework where pixel-wise perceptrons are trained on a subset of pixels sampled based on the estimated uncertainty.
arXiv Detail & Related papers (2021-09-20T23:30:04Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
We show how the concept of Errors-in-Variables can be used in Bayesian deep regression.
We discuss the approach along various simulated and real examples.
arXiv Detail & Related papers (2021-05-19T12:37:02Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
The distribution of a neural network's latent representations has been successfully used to detect out-of-distribution (OOD) data.
This work investigates whether this distribution correlates with a model's epistemic uncertainty, thus indicating its ability to generalise to novel inputs.
arXiv Detail & Related papers (2020-12-05T17:30:35Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.