A kilometer photonic link connecting superconducting circuits in two dilution refrigerators
- URL: http://arxiv.org/abs/2508.02444v1
- Date: Mon, 04 Aug 2025 14:04:34 GMT
- Title: A kilometer photonic link connecting superconducting circuits in two dilution refrigerators
- Authors: Yiyu Zhou, Yufeng Wu, Chunzhen Li, Mohan Shen, Likai Yang, Jiacheng Xie, Hong X. Tang,
- Abstract summary: We experimentally demonstrate coherent signal transfer between two superconducting circuits housed in separate dilution refrigerators.<n>With transducers at each node achieving >0.1% efficiency, an overall 80 dB improvement in efficiency over commercial electro-optic modulators is attainable.<n>This work provides critical design guidelines towards scalable superconducting quantum networks interconnected by photonic links.
- Score: 0.837622912636323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconducting quantum processors are a leading platform for implementing practical quantum computation algorithms. Although superconducting quantum processors with hundreds of qubits have been demonstrated, their further scaling up is constrained by the physical size and cooling power of dilution refrigerators. This constraint can be overcome by constructing a quantum network to interconnect qubits hosted in different refrigerators, which requires microwave-to-optical transducers to enable low-loss signal transmission over long distances. Despite that various designs and demonstrations have achieved high-efficiency and low-added-noise transducers, a coherent photonic link between separate refrigerators has not yet been realized. In this work, we experimentally demonstrate coherent signal transfer between two superconducting circuits housed in separate dilution refrigerators, enabled by a pair of frequency-matched aluminum nitride electro-optic transducers connected via a 1-km telecom optical fiber. With transducers at each node achieving >0.1% efficiency, an overall 80 dB improvement in transduction efficiency over commercial electro-optic modulators is attainable, paving the way towards a fully quantum-enabled link. This work provides critical design guidelines towards scalable superconducting quantum networks interconnected by photonic links.
Related papers
- Coherent control of a superconducting qubit using light [1.9834013025499746]
Superconducting microwave qubits operating in cryogenic environments have emerged as promising candidates for quantum processor nodes.<n>We demonstrate coherent optical control of a superconducting qubit.
arXiv Detail & Related papers (2023-10-24T19:51:39Z) - Optical readout of a superconducting qubit using a scalable piezo-optomechanical transducer [0.0]
Superconducting quantum processors have made significant progress in size and computing potential.
The practical cryogenic limitations of operating large numbers of superconducting qubits are becoming a bottleneck for further scaling.
Here, we demonstrate optical readout through an optical fiber of a superconducting transmon qubit connected via a coaxial cable to a fully integrated piezo-optomechanical transducer.
arXiv Detail & Related papers (2023-10-09T18:00:02Z) - Terahertz-Mediated Microwave-to-Optical Transduction [0.0]
Transduction of quantum signals between the microwave and the optical ranges will unlock powerful hybrid quantum systems.
Most microwave-to-optical quantum transducers suffer from thermal noise due to pump absorption.
We analyze the coupled thermal and wave dynamics in electro-optic transducers that use a two-step scheme based on an intermediate frequency state in the THz range.
arXiv Detail & Related papers (2023-07-07T19:31:39Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - A fast and large bandwidth superconducting variable coupler [0.0]
Superconducting Josephson junction-based couplers can be designed for dissipation-free operation with fast switching.
These enable on-chip, quantum-coherent routing of microwave photons.
arXiv Detail & Related papers (2020-11-18T18:20:26Z) - Control and readout of a superconducting qubit using a photonic link [0.0]
A universal quantum computer will require processors with millions of quantum bits (qubits)
In superconducting quantum processors, each qubit is individually addressed with microwave signal lines that connect room temperature electronics to the cryogenic environment of the quantum circuit.
Here we introduce a photonic link employing an optical fiber to guide modulated laser light from room temperature to a cryogenic photodetector, capable of delivering shot-noise limited microwave signals directly at millikelvin temperatures.
arXiv Detail & Related papers (2020-09-02T16:19:41Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.