Clinical Expert Uncertainty Guided Generalized Label Smoothing for Medical Noisy Label Learning
- URL: http://arxiv.org/abs/2508.02495v2
- Date: Tue, 05 Aug 2025 04:58:15 GMT
- Title: Clinical Expert Uncertainty Guided Generalized Label Smoothing for Medical Noisy Label Learning
- Authors: Kunyu Zhang, Lin Gu, Liangchen Liu, Yingke Chen, Binyang Wang, Jin Yan, Yingying Zhu,
- Abstract summary: Previous studies have proposed extracting image labels from clinical notes to create large-scale medical image datasets at a low cost.<n>These approaches inherently suffer from label noise due to uncertainty from the clinical experts.<n>We propose a clinical expert uncertainty-aware benchmark, along with a label smoothing method, which significantly improves performance.
- Score: 11.498569225914258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many previous studies have proposed extracting image labels from clinical notes to create large-scale medical image datasets at a low cost. However, these approaches inherently suffer from label noise due to uncertainty from the clinical experts. When radiologists and physicians analyze medical images to make diagnoses, they often include uncertainty-aware notes such as ``maybe'' or ``not excluded''. Unfortunately, current text-mining methods overlook these nuances, resulting in the creation of noisy labels. Existing methods for handling noisy labels in medical image analysis, which typically address the problem through post-processing techniques, have largely ignored the important issue of expert-driven uncertainty contributing to label noise. To better incorporate the expert-written uncertainty in clinical notes into medical image analysis and address the label noise issue, we first examine the impact of clinical expert uncertainty on label noise. We then propose a clinical expert uncertainty-aware benchmark, along with a label smoothing method, which significantly improves performance compared to current state-of-the-art approaches.
Related papers
- Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence [83.02106623401885]
We present UltraFedFM, an innovative privacy-preserving ultrasound foundation model.
UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries.
It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation.
arXiv Detail & Related papers (2024-11-25T13:40:11Z) - Uncertainty-aware Medical Diagnostic Phrase Identification and Grounding [72.18719355481052]
We introduce a novel task called Medical Report Grounding (MRG)<n>MRG aims to directly identify diagnostic phrases and their corresponding grounding boxes from medical reports in an end-to-end manner.<n>We propose uMedGround, a robust and reliable framework that leverages a multimodal large language model to predict diagnostic phrases.
arXiv Detail & Related papers (2024-04-10T07:41:35Z) - Deep learning with noisy labels in medical prediction problems: a scoping review [14.279891046240387]
This scoping review aims to comprehensively review label noise management in deep learning-based medical prediction problems.
A total of 60 papers met inclusion criteria between 2016 and 2023.
We recommend considering label noise as a standard element in medical research, even if it is not dedicated to handling noisy labels.
arXiv Detail & Related papers (2024-03-19T19:24:00Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
We propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification.
We employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples.
We also design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples.
arXiv Detail & Related papers (2022-05-10T07:50:08Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Pathological Image Segmentation with Noisy Labels [13.8002043402326]
We propose a novel label re-weighting framework to account for the reliability of different experts' labels on each pixel.
We also devise a new attention heatmap, which takes roughness as prior knowledge to guide the model to focus on important regions.
arXiv Detail & Related papers (2021-03-20T03:36:06Z) - Improving Medical Image Classification with Label Noise Using
Dual-uncertainty Estimation [72.0276067144762]
We discuss and define the two common types of label noise in medical images.
We propose an uncertainty estimation-based framework to handle these two label noise amid the medical image classification task.
arXiv Detail & Related papers (2021-02-28T14:56:45Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
We seek to exploit rich labeled data from relevant domains to help the learning in the target task via Unsupervised Domain Adaptation (UDA)
Unlike most UDA methods that rely on clean labeled data or assume samples are equally transferable, we innovatively propose a Collaborative Unsupervised Domain Adaptation algorithm.
We theoretically analyze the generalization performance of the proposed method, and also empirically evaluate it on both medical and general images.
arXiv Detail & Related papers (2020-07-05T11:49:17Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z) - Unsupervised Anomaly Detection for X-Ray Images [4.353258086186526]
We investigate how unsupervised methods trained on images without anomalies can be used to assist doctors in evaluating X-ray images of hands.
We adopt state-of-the-art approaches for unsupervised learning to detect anomalies and show how the outputs of these methods can be explained.
We provide an extensive evaluation of different approaches and demonstrate empirically that even without labels it is possible to achieve satisfying results on a real-world dataset of X-ray images of hands.
arXiv Detail & Related papers (2020-01-29T15:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.