論文の概要: Trustworthy scientific inference for inverse problems with generative models
- arxiv url: http://arxiv.org/abs/2508.02602v1
- Date: Mon, 04 Aug 2025 16:56:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.442371
- Title: Trustworthy scientific inference for inverse problems with generative models
- Title(参考訳): 生成モデルを用いた逆問題に対する信頼できる科学的推測
- Authors: James Carzon, Luca Masserano, Joshua D. Ingram, Alex Shen, Antonio Carlos Herling Ribeiro Junior, Tommaso Dorigo, Michele Doro, Joshua S. Speagle, Rafael Izbicki, Ann B. Lee,
- Abstract要約: 生成人工知能(AI)は、トレーニング例からパターンを学習することで、複雑なデータ構造(テキスト、画像、ビデオ)を生成できる。
科学の分野では、研究者は観測データから隠れたパラメータを推測するために生成モデルを適用している。
本稿では,Frequentist-Bayes(FreB)という,AI生成した確率分布を信頼領域に再認識する数学的厳密なプロトコルを提案する。
- 参考スコア(独自算出の注目度): 2.986676058695281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative artificial intelligence (AI) excels at producing complex data structures (text, images, videos) by learning patterns from training examples. Across scientific disciplines, researchers are now applying generative models to ``inverse problems'' to infer hidden parameters from observed data. While these methods can handle intractable models and large-scale studies, they can also produce biased or overconfident conclusions. We present a solution with Frequentist-Bayes (FreB), a mathematically rigorous protocol that reshapes AI-generated probability distributions into confidence regions that consistently include true parameters with the expected probability, while achieving minimum size when training and target data align. We demonstrate FreB's effectiveness by tackling diverse case studies in the physical sciences: identifying unknown sources under dataset shift, reconciling competing theoretical models, and mitigating selection bias and systematics in observational studies. By providing validity guarantees with interpretable diagnostics, FreB enables trustworthy scientific inference across fields where direct likelihood evaluation remains impossible or prohibitively expensive.
- Abstract(参考訳): 生成人工知能(AI)は、トレーニング例からパターンを学習することで、複雑なデータ構造(テキスト、画像、ビデオ)を生成できる。
科学の分野では、研究者は「逆問題」に生成モデルを適用し、観測データから隠れたパラメータを推論している。
これらの手法は、難解なモデルや大規模な研究を扱うことができるが、偏見や過度な結論を生み出すこともできる。
本稿ではFrequentist-Bayes(FreB)という,AI生成した確率分布を予測された確率を持つ真パラメータを含む信頼領域に再設定する数学的厳密なプロトコルを提案する。
本稿では、FreBの有効性を、データセットシフトの下で未知のソースを識別し、競合する理論モデルを調整し、観測研究における選択バイアスと体系を緩和する、物理科学における多様なケーススタディに取り組むことによって示す。
解釈可能な診断による妥当性保証を提供することで、FreBは直接的な可能性評価が不可能または違法に高価である分野にわたって信頼できる科学的推論を可能にする。
関連論文リスト
- Detecting Model Misspecification in Amortized Bayesian Inference with Neural Networks: An Extended Investigation [9.950524371154394]
本研究では、教師なしの方法で訓練し、テスト時にモデルの誤特定を確実に検出できる新しい誤特定尺度を提案する。
提案手法は,不審な出力をユーザに警告し,予測が信頼できない場合に警告を発し,モデル設計者がより良いシミュレータを探索する際の指針となることを示す。
論文 参考訳(メタデータ) (2024-06-05T11:30:16Z) - Demystifying amortized causal discovery with transformers [21.058343547918053]
観測データからの因果発見のための教師付き学習アプローチは、しばしば競争性能を達成する。
本研究では,CSIvAについて検討する。CSIvAは,合成データのトレーニングと実データへの転送を約束するトランスフォーマーモデルである。
既存の識別可能性理論とギャップを埋め、トレーニングデータ分布の制約がテスト観測の事前を暗黙的に定義していることを示します。
論文 参考訳(メタデータ) (2024-05-27T08:17:49Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Evaluating Causal Inference Methods [0.4588028371034407]
我々は、因果推論手法を検証するために、深層生成モデルに基づくフレームワーク、クレデンスを導入する。
我々の研究は、因果推論手法を検証するために、深層生成モデルに基づくフレームワーク、クレデンスを導入している。
論文 参考訳(メタデータ) (2022-02-09T00:21:22Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
本稿では,モデルアーキテクチャ,正規化手法,損失関数が分類結果の予測性能および信頼性に与える影響について検討する。
その結果,高い成功率を達成するためには,正則化と推論手法の正しい選択が重要であることが明らかとなった。
論文 参考訳(メタデータ) (2020-03-17T10:13:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。