論文の概要: D2PPO: Diffusion Policy Policy Optimization with Dispersive Loss
- arxiv url: http://arxiv.org/abs/2508.02644v1
- Date: Mon, 04 Aug 2025 17:33:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.461287
- Title: D2PPO: Diffusion Policy Policy Optimization with Dispersive Loss
- Title(参考訳): D2PPO:分散損失を考慮した拡散政策最適化
- Authors: Guowei Zou, Weibing Li, Hejun Wu, Yukun Qian, Yuhang Wang, Haitao Wang,
- Abstract要約: 高次元空間における多モーダル動作分布のモデル化によるロボット操作における拡散制御
拡散ポリシーは、意味的に類似した観察が区別できない特徴にマッピングされるときに、表現の崩壊に悩まされる。
D2PPOは分散損失正規化を導入し、各バッチ内のすべての隠された表現を負のペアとして扱うことで表現の崩壊と戦う。
- 参考スコア(独自算出の注目度): 13.132582315951193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion policies excel at robotic manipulation by naturally modeling multimodal action distributions in high-dimensional spaces. Nevertheless, diffusion policies suffer from diffusion representation collapse: semantically similar observations are mapped to indistinguishable features, ultimately impairing their ability to handle subtle but critical variations required for complex robotic manipulation. To address this problem, we propose D2PPO (Diffusion Policy Policy Optimization with Dispersive Loss). D2PPO introduces dispersive loss regularization that combats representation collapse by treating all hidden representations within each batch as negative pairs. D2PPO compels the network to learn discriminative representations of similar observations, thereby enabling the policy to identify subtle yet crucial differences necessary for precise manipulation. In evaluation, we find that early-layer regularization benefits simple tasks, while late-layer regularization sharply enhances performance on complex manipulation tasks. On RoboMimic benchmarks, D2PPO achieves an average improvement of 22.7% in pre-training and 26.1% after fine-tuning, setting new SOTA results. In comparison with SOTA, results of real-world experiments on a Franka Emika Panda robot show the excitingly high success rate of our method. The superiority of our method is especially evident in complex tasks. Project page: https://guowei-zou.github.io/d2ppo/
- Abstract(参考訳): 高次元空間における多モーダル動作分布を自然にモデル化することにより,ロボット操作における拡散ポリシが優れている。
しかし、拡散政策は拡散表現の崩壊に苦しむ:意味的に類似した観察は区別できない特徴にマッピングされ、最終的には複雑なロボット操作に必要な微妙だが重要な変化に対処する能力が損なわれる。
そこで本研究では,分散損失を考慮したD2PPO(Diffusion Policy Policy Optimization with Dispersive Loss)を提案する。
D2PPOは分散損失正規化を導入し、各バッチ内のすべての隠された表現を負のペアとして扱うことで表現の崩壊と戦う。
D2PPOはネットワークを補完し、類似した観測の識別的表現を学習することで、正確な操作に必要な微妙で重要な違いを識別することができる。
評価では、初期層正規化は単純なタスクに有効であるのに対し、後期層正規化は複雑な操作タスクの性能を著しく向上させる。
RoboMimicベンチマークでは、D2PPOはトレーニング前の22.7%、微調整後の26.1%の平均的な改善を達成し、新しいSOTA結果が設定された。
SOTAと比較して、フランカ・エミカ・パンダロボットの実世界実験の結果は、我々の手法のエキサイティングな成功率を示している。
本手法の優位性は, 複雑タスクにおいて特に顕著である。
プロジェクトページ:https://guowei-zou.github.io/d2ppo/
関連論文リスト
- Towards Self-Improvement of Diffusion Models via Group Preference Optimization [10.6096255671291]
グループ優先最適化(GPO)は、外部データを必要とせずに性能を向上させる効果的な自己改善手法である。
GPOは、安定拡散3.5媒体の正確なカウントとテキストレンダリング能力を20パーセント改善する。
プラグアンドプレイ方式では、推論中に余分なオーバーヘッドは発生しない。
論文 参考訳(メタデータ) (2025-05-16T10:04:57Z) - Entropy Controllable Direct Preference Optimization [3.536605202672355]
提案するDPOは,提案するポリシのエントロピーを制御可能なH-DPOである。
実験の結果,H-DPO は様々なタスクにおいて DPO よりも優れており,数理タスクに対するpass@$k$ 評価において優れた結果が得られた。
論文 参考訳(メタデータ) (2024-11-12T07:09:44Z) - Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
我々は、優先不確実性ペナル化スキームを導入し、DPOの悲観的な枠組みを開発する。
ペナル化は、不確実なサンプルの損失勾配を減衰させる損失の補正として機能する。
我々は,バニラDPOと比較して全体的な性能が向上し,高い不確実性選択/拒絶反応によるプロンプトの完成度も向上した。
論文 参考訳(メタデータ) (2024-10-26T14:24:37Z) - Bidirectional Decoding: Improving Action Chunking via Guided Test-Time Sampling [51.38330727868982]
動作チャンキングが学習者と実証者の間の分岐にどのように影響するかを示す。
動作チャンキングをクローズドループ適応でブリッジするテスト時間推論アルゴリズムである双方向デコーディング(BID)を提案する。
提案手法は、7つのシミュレーションベンチマークと2つの実世界のタスクにまたがって、最先端の2つの生成ポリシーの性能を向上させる。
論文 参考訳(メタデータ) (2024-08-30T15:39:34Z) - D2PO: Discriminator-Guided DPO with Response Evaluation Models [63.71853401569461]
学習を通して嗜好が収集されるオンライン環境において,識別器誘導型DPOであるD2POを提案する。
金の選好を収集する際、これらは政策の訓練だけでなく、銀ラベルによる政策訓練のためのさらに総合的なデータに対する差別的な反応評価モデルを訓練するために利用します。
DPOで政策を訓練し、従来のPPOを上回り、政策モデルから分離した差別者を維持することの恩恵を受けるのが最も効果的である。
論文 参考訳(メタデータ) (2024-05-02T17:44:41Z) - Sample Dropout: A Simple yet Effective Variance Reduction Technique in
Deep Policy Optimization [18.627233013208834]
重要度サンプリングを用いることで, 目的推定値に高いばらつきが生じる可能性が示唆された。
そこで本研究では, サンプルの偏差が高すぎる場合に, サンプルをドロップアウトすることで, 推定分散を束縛する, サンプルドロップアウトと呼ばれる手法を提案する。
論文 参考訳(メタデータ) (2023-02-05T04:44:35Z) - Robust Policy Optimization in Deep Reinforcement Learning [16.999444076456268]
連続的な行動領域では、パラメータ化された行動分布は容易に探索の制御を可能にする。
特に,摂動分布を利用したロバストポリシ最適化(RPO)アルゴリズムを提案する。
我々は,DeepMind Control,OpenAI Gym,Pybullet,IsaacGymの各種連続制御タスクについて評価を行った。
論文 参考訳(メタデータ) (2022-12-14T22:43:56Z) - Deterministic and Discriminative Imitation (D2-Imitation): Revisiting
Adversarial Imitation for Sample Efficiency [61.03922379081648]
本稿では,敵対的トレーニングやmin-max最適化を必要としない非政治的サンプル効率の手法を提案する。
実験の結果, D2-Imitation はサンプル効率の向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T19:36:19Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的とする。
本稿では,教師なしキーポイント検出のためのレグレッシブドメイン適応(RegDA)法を提案する。
提案手法は,異なるデータセット上のPCKにおいて,8%から11%の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2021-03-10T16:45:22Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
我々は,OoD検出性能を改善しつつ,ニューラルネットワークをOoDデータのチューニングから解放する2つの方法を提案する。
具体的には、信頼性スコアリングと修正された入力前処理法を分離することを提案する。
大規模画像データセットのさらなる解析により、セマンティックシフトと非セマンティックシフトの2種類の分布シフトが有意な差を示すことが示された。
論文 参考訳(メタデータ) (2020-02-26T04:18:25Z) - Simple and Effective Prevention of Mode Collapse in Deep One-Class
Classification [93.2334223970488]
深部SVDDにおける超球崩壊を防止するための2つの正則化器を提案する。
第1の正則化器は、標準のクロスエントロピー損失によるランダムノイズの注入に基づいている。
第2の正規化器は、小さすぎるとミニバッチ分散をペナライズする。
論文 参考訳(メタデータ) (2020-01-24T03:44:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。