PMGS: Reconstruction of Projectile Motion across Large Spatiotemporal Spans via 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2508.02660v1
- Date: Mon, 04 Aug 2025 17:49:37 GMT
- Title: PMGS: Reconstruction of Projectile Motion across Large Spatiotemporal Spans via 3D Gaussian Splatting
- Authors: Yijun Xu, Jingrui Zhang, Yuhan Chen, Dingwen Wang, Lei Yu, Chu He,
- Abstract summary: This study proposes PMGS, focusing on reconstructing Projectile via 3D Gaussian Splatting.<n>We introduce an acceleration constraint to bridge Newtonian mechanics and pose estimation, and design a dynamic simulated deformation strategy that adaptively schedules learning rates based on motion states.
- Score: 9.314869696272297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling complex rigid motion across large spatiotemporal spans remains an unresolved challenge in dynamic reconstruction. Existing paradigms are mainly confined to short-term, small-scale deformation and offer limited consideration for physical consistency. This study proposes PMGS, focusing on reconstructing Projectile Motion via 3D Gaussian Splatting. The workflow comprises two stages: 1) Target Modeling: achieving object-centralized reconstruction through dynamic scene decomposition and an improved point density control; 2) Motion Recovery: restoring full motion sequences by learning per-frame SE(3) poses. We introduce an acceleration consistency constraint to bridge Newtonian mechanics and pose estimation, and design a dynamic simulated annealing strategy that adaptively schedules learning rates based on motion states. Futhermore, we devise a Kalman fusion scheme to optimize error accumulation from multi-source observations to mitigate disturbances. Experiments show PMGS's superior performance in reconstructing high-speed nonlinear rigid motion compared to mainstream dynamic methods.
Related papers
- Laplacian Analysis Meets Dynamics Modelling: Gaussian Splatting for 4D Reconstruction [9.911802466255653]
We propose a novel dynamic 3DGS framework with hybrid explicit-implicit functions.<n>Our method demonstrates state-of-the-art performance in reconstructing complex dynamic scenes, achieving better reconstruction fidelity.
arXiv Detail & Related papers (2025-08-07T01:39:29Z) - HAIF-GS: Hierarchical and Induced Flow-Guided Gaussian Splatting for Dynamic Scene [11.906835503107189]
We propose HAIF-GS, a unified framework that enables structured and consistent dynamic modeling through sparse anchor-driven deformation.<n>We show that HAIF-GS significantly outperforms prior dynamic 3DGS methods in rendering quality, temporal coherence, and reconstruction efficiency.
arXiv Detail & Related papers (2025-06-11T08:45:08Z) - ReCoM: Realistic Co-Speech Motion Generation with Recurrent Embedded Transformer [58.49950218437718]
We present ReCoM, an efficient framework for generating high-fidelity and generalizable human body motions synchronized with speech.<n>The core innovation lies in the Recurrent Embedded Transformer (RET), which integrates Dynamic Embedding Regularization (DER) into a Vision Transformer (ViT) core architecture.<n>To enhance model robustness, we incorporate the proposed DER strategy, which equips the model with dual capabilities of noise resistance and cross-domain generalization.
arXiv Detail & Related papers (2025-03-27T16:39:40Z) - EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation [59.33052312107478]
Event cameras offer possibilities for 3D motion estimation through continuous adaptive pixel-level responses to scene changes.<n>This paper presents EMove, a novel event-based framework that models-uniform trajectories via event-guided parametric curves.<n>For motion representation, we introduce a density-aware adaptation mechanism to fuse spatial and temporal features under event guidance.<n>The final 3D motion estimation is achieved through multi-temporal sampling of parametric trajectories, flows and depth motion fields.
arXiv Detail & Related papers (2025-03-14T13:15:54Z) - CoMoGaussian: Continuous Motion-Aware Gaussian Splatting from Motion-Blurred Images [19.08403715388913]
3D Gaussian Splatting has gained significant attention due to its high-quality novel view rendering.<n>A critical issue is the camera motion blur caused by movement during exposure, which hinders accurate 3D scene reconstruction.<n>We propose CoMoGaussian, a Continuous Motion-Aware Gaussian Splatting that reconstructs precise 3D scenes from motion-blurred images.
arXiv Detail & Related papers (2025-03-07T11:18:43Z) - Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction [50.873820265165975]
We introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction.<n>We propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling.<n>We contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-11-25T08:23:38Z) - Differentiable Motion Manifold Primitives for Reactive Motion Generation under Kinodynamic Constraints [5.982922468400902]
Differentiable Motion Manifold Primitives (DMMP) is a novel neural network architecture that encodes and generates continuous-time, differentiable trajectories.<n> Experiments on dynamic throwing with a 7-DoF robot arm demonstrate that DMMP outperforms prior methods in planning speed, task success, and constraint satisfaction.
arXiv Detail & Related papers (2024-10-16T03:29:33Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - Shape of Motion: 4D Reconstruction from a Single Video [51.04575075620677]
We introduce a method capable of reconstructing generic dynamic scenes, featuring explicit, full-sequence-long 3D motion.
We exploit the low-dimensional structure of 3D motion by representing scene motion with a compact set of SE3 motion bases.
Our method achieves state-of-the-art performance for both long-range 3D/2D motion estimation and novel view synthesis on dynamic scenes.
arXiv Detail & Related papers (2024-07-18T17:59:08Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.