Differentiable Motion Manifold Primitives for Reactive Motion Generation under Kinodynamic Constraints
- URL: http://arxiv.org/abs/2410.12193v2
- Date: Thu, 24 Jul 2025 11:36:31 GMT
- Title: Differentiable Motion Manifold Primitives for Reactive Motion Generation under Kinodynamic Constraints
- Authors: Yonghyeon Lee,
- Abstract summary: Differentiable Motion Manifold Primitives (DMMP) is a novel neural network architecture that encodes and generates continuous-time, differentiable trajectories.<n> Experiments on dynamic throwing with a 7-DoF robot arm demonstrate that DMMP outperforms prior methods in planning speed, task success, and constraint satisfaction.
- Score: 5.982922468400902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time motion generation -- which is essential for achieving reactive and adaptive behavior -- under kinodynamic constraints for high-dimensional systems is a crucial yet challenging problem. We address this with a two-step approach: offline learning of a lower-dimensional trajectory manifold of task-relevant, constraint-satisfying trajectories, followed by rapid online search within this manifold. Extending the discrete-time Motion Manifold Primitives (MMP) framework, we propose Differentiable Motion Manifold Primitives (DMMP), a novel neural network architecture that encodes and generates continuous-time, differentiable trajectories, trained using data collected offline through trajectory optimizations, with a strategy that ensures constraint satisfaction -- absent in existing methods. Experiments on dynamic throwing with a 7-DoF robot arm demonstrate that DMMP outperforms prior methods in planning speed, task success, and constraint satisfaction.
Related papers
- PMGS: Reconstruction of Projectile Motion across Large Spatiotemporal Spans via 3D Gaussian Splatting [9.314869696272297]
This study proposes PMGS, focusing on reconstructing Projectile via 3D Gaussian Splatting.<n>We introduce an acceleration constraint to bridge Newtonian mechanics and pose estimation, and design a dynamic simulated deformation strategy that adaptively schedules learning rates based on motion states.
arXiv Detail & Related papers (2025-08-04T17:49:37Z) - Dynamic Manipulation of Deformable Objects in 3D: Simulation, Benchmark and Learning Strategy [88.8665000676562]
Prior methods often simplify the problem to low-speed or 2D settings, limiting their applicability to real-world 3D tasks.<n>To mitigate data scarcity, we introduce a novel simulation framework and benchmark grounded in reduced-order dynamics.<n>We propose Dynamics Informed Diffusion Policy (DIDP), a framework that integrates imitation pretraining with physics-informed test-time adaptation.
arXiv Detail & Related papers (2025-05-23T03:28:25Z) - ReCoM: Realistic Co-Speech Motion Generation with Recurrent Embedded Transformer [58.49950218437718]
We present ReCoM, an efficient framework for generating high-fidelity and generalizable human body motions synchronized with speech.<n>The core innovation lies in the Recurrent Embedded Transformer (RET), which integrates Dynamic Embedding Regularization (DER) into a Vision Transformer (ViT) core architecture.<n>To enhance model robustness, we incorporate the proposed DER strategy, which equips the model with dual capabilities of noise resistance and cross-domain generalization.
arXiv Detail & Related papers (2025-03-27T16:39:40Z) - FRMD: Fast Robot Motion Diffusion with Consistency-Distilled Movement Primitives for Smooth Action Generation [3.7351623987275873]
We propose Fast Robot Motion Diffusion to generate smooth, temporally consistent robot motions.<n>Our method integrates Movement Primitives (MPs) with Consistency Models to enable efficient, single-step trajectory generation.<n>Our results show that FRMD generates significantly faster, smoother trajectories while achieving higher success rates.
arXiv Detail & Related papers (2025-03-03T20:56:39Z) - Towards Learning Scalable Agile Dynamic Motion Planning for Robosoccer Teams with Policy Optimization [0.0]
Dynamic Motion Planning for Multi-Agent Systems in the presence of obstacles is a universal and unsolved problem.
We present a learning-based dynamic navigation model and show our model working on a simple environment in the concept of a simple Robosoccer Game.
arXiv Detail & Related papers (2025-02-08T11:13:07Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce kinematically feasible trajectories.
The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
arXiv Detail & Related papers (2025-02-05T20:51:28Z) - Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
We propose a novel approach for optimal online motion planning with minimal information about dynamic obstacles.
The proposed methodology combines Monte Carlo Tree Search (MCTS), for online optimal planning via model simulations, with Velocity Obstacles (VO), for obstacle avoidance.
We show the superiority of our methodology with respect to state-of-the-art planners, including Non-linear Model Predictive Control (NMPC), in terms of improved collision rate, computational and task performance.
arXiv Detail & Related papers (2025-01-16T16:45:08Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.
This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - Improved deep learning of chaotic dynamical systems with multistep penalty losses [0.0]
Predicting the long-term behavior of chaotic systems remains a formidable challenge.
This paper introduces a novel framework that addresses these challenges by leveraging the recently proposed multi-step penalty operators.
arXiv Detail & Related papers (2024-10-08T00:13:57Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Potential Based Diffusion Motion Planning [73.593988351275]
We propose a new approach towards learning potential based motion planning.
We train a neural network to capture and learn an easily optimizable potentials over motion planning trajectories.
We demonstrate its inherent composability, enabling us to generalize to a multitude of different motion constraints.
arXiv Detail & Related papers (2024-07-08T17:48:39Z) - Physics-informed Neural Motion Planning on Constraint Manifolds [6.439800184169697]
Constrained Motion Planning (CMP) aims to find a collision-free path between the given start and goal configurations on the kinematic constraint manifold.
We propose the first physics-informed CMP framework that solves the Eikonal equation on the constraint manifold and trains neural function for CMP without expert data.
Our results show that the proposed approach efficiently solves various CMP problems in both simulation and real-world, including object manipulation under orientation constraints and door opening with a high-dimensional 6-DOF robot manipulator.
arXiv Detail & Related papers (2024-03-09T02:24:02Z) - MMP++: Motion Manifold Primitives with Parametric Curve Models [5.982922468400902]
Motion Manifold Primitives (MMP) is a manifold-based approach for encoding basic motion skills.
We introduce Motion Manifold Primitives++ (MMP++), a new model that integrates the strengths of both MMP and traditional methods.
We show that MMP++ and IMMP++ outperform existing methods in trajectory generation tasks.
arXiv Detail & Related papers (2023-10-26T00:28:37Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
We propose a combined task and motion planning approach to optimize sequencing, assignment, and execution of tasks.
The framework relies on decoupling tasks and actions, where an action is one possible geometric realization of a symbolic task.
We demonstrate the approach effectiveness in a collaborative manufacturing scenario, in which a robotic arm and a human worker shall assemble a mosaic.
arXiv Detail & Related papers (2023-03-27T01:50:45Z) - Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural
Networks [29.239926645660823]
This paper introduces a novel learning-to-plan framework that exploits the concept of constraint manifold.
Our approach generates plans satisfying an arbitrary set of constraints and computes them in a short constant time, namely the inference time of a neural network.
We validate our approach on two simulated tasks and in a demanding real-world scenario, where we use a Kuka LBR Iiwa 14 robotic arm to perform the hitting movement in robotic Air Hockey.
arXiv Detail & Related papers (2023-01-11T06:54:11Z) - Learning-based Motion Planning in Dynamic Environments Using GNNs and
Temporal Encoding [15.58317292680615]
We propose a GNN-based approach that uses temporal encoding and imitation learning with data aggregation for learning both the embeddings and the edge prioritization policies.
Experiments show that the proposed methods can significantly accelerate online planning over state-of-the-art complete dynamic planning algorithms.
arXiv Detail & Related papers (2022-10-16T01:27:16Z) - Reinforcement Learning with Prior Policy Guidance for Motion Planning of
Dual-Arm Free-Floating Space Robot [11.272278713797537]
We propose a novel algorithm, Efficient, to facilitate RL-based methods to improve planning accuracy efficiently.
Our core contributions are constructing a mixed policy with prior knowledge guidance and introducing infinite norm to build a more reasonable reward function.
arXiv Detail & Related papers (2022-09-03T14:20:17Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Neural Motion Fields: Encoding Grasp Trajectories as Implicit Value
Functions [65.84090965167535]
We present Neural Motion Fields, a novel object representation which encodes both object point clouds and the relative task trajectories as an implicit value function parameterized by a neural network.
This object-centric representation models a continuous distribution over the SE(3) space and allows us to perform grasping reactively by leveraging sampling-based MPC to optimize this value function.
arXiv Detail & Related papers (2022-06-29T18:47:05Z) - Constrained Motion Planning Networks X [15.047777217748889]
We present Constrained Motion Planning Networks X (CoMPNetX)
It is a neural planning approach, comprising a conditional deep neural generator and discriminator with neural gradients-based fast projection operator.
We show that our method finds path solutions with high success rates and lower times than state-of-the-art traditional path-finding tools.
arXiv Detail & Related papers (2020-10-17T03:34:38Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z) - Jump Operator Planning: Goal-Conditioned Policy Ensembles and Zero-Shot
Transfer [71.44215606325005]
We propose a novel framework called Jump-Operator Dynamic Programming for quickly computing solutions within a super-exponential space of sequential sub-goal tasks.
This approach involves controlling over an ensemble of reusable goal-conditioned polices functioning as temporally extended actions.
We then identify classes of objective functions on this subspace whose solutions are invariant to the grounding, resulting in optimal zero-shot transfer.
arXiv Detail & Related papers (2020-07-06T05:13:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.