論文の概要: Evaluation of Deep Learning Models for LBBB Classification in ECG Signals
- arxiv url: http://arxiv.org/abs/2508.02710v1
- Date: Wed, 30 Jul 2025 22:11:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.571036
- Title: Evaluation of Deep Learning Models for LBBB Classification in ECG Signals
- Title(参考訳): ECG信号におけるLEBB分類のためのディープラーニングモデルの評価
- Authors: Beatriz Macas Ordóñez, Diego Vinicio Orellana Villavicencio, José Manuel Ferrández, Paula Bonomini,
- Abstract要約: 本研究では、心電図(ECG)信号から空間的・時間的パターンを抽出し、それらを健康な被験者、左二分枝ブロック(LBBB)、左二分枝ブロック(SLBBB)の3つのグループに分類する能力を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores different neural network architectures to evaluate their ability to extract spatial and temporal patterns from electrocardiographic (ECG) signals and classify them into three groups: healthy subjects, Left Bundle Branch Block (LBBB), and Strict Left Bundle Branch Block (sLBBB). Clinical Relevance, Innovative technologies enable the selection of candidates for Cardiac Resynchronization Therapy (CRT) by optimizing the classification of subjects with Left Bundle Branch Block (LBBB).
- Abstract(参考訳): 本研究では,心電図(ECG)信号から空間的・時間的パターンを抽出し,健常者,左二分枝ブロック(LBBB),左二分枝ブロック(SLBBB)の3つのグループに分類する方法について検討した。
臨床関連、イノベーティブ・テクノロジーは、左二分枝ブロック (LBBB) の被験者の分類を最適化することにより、心臓再同期療法 (CRT) の候補の選択を可能にする。
関連論文リスト
- Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound [43.27869631032662]
正確なセグメンテーションのために2D/3Dボックスにのみ依存するFlip Learningと呼ばれる新しい学習ベースのWSSフレームワークを導入する。
ボックスからターゲットを消去して分類タグのフリップを容易にするために複数のエージェントが使用され、消去された領域が予測されたセグメンテーションマスクとして機能する。
提案手法は最先端のWSS手法や基礎モデルより優れており,完全教師付き学習アルゴリズムと同等の性能を発揮する。
論文 参考訳(メタデータ) (2025-03-26T16:20:02Z) - Architecture Analysis and Benchmarking of 3D U-shaped Deep Learning Models for Thoracic Anatomical Segmentation [0.8897689150430447]
3次元U型モデルの変種に対する最初の系統的ベンチマーク研究を行う。
本研究では,異なる注意機構,解像度ステージ数,ネットワーク構成がセグメンテーション精度および計算複雑性に与える影響について検討した。
論文 参考訳(メタデータ) (2024-02-05T17:43:02Z) - Graph Neural Networks for Topological Feature Extraction in ECG
Classification [11.337163242503166]
グラフニューラルネットワークを用いて心拍を分類する3つの手法を提案する。
提案した3つの手法は、それぞれ99.38、98.76、91.93パーセントの精度で不整脈分類予測を行うことができる。
論文 参考訳(メタデータ) (2023-11-02T16:14:34Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - ECG Classification System for Arrhythmia Detection Using Convolutional Neural Networks [0.0]
本研究では, 畳み込みニューラルネットワーク(CNN)アルゴリズムを用いた深層学習(DL)パイプライン技術を用いて, 患者の心血管性喉頭不整脈を検出する。
その結果, 提案した戦略は, 98.2%の精度で15,000の症例を分類した。
論文 参考訳(メタデータ) (2023-03-07T05:48:28Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
入力ECG信号はまずセグメント化され、正規化され、その後、特徴抽出と分類のためにVGGとLSTMネットワークに入力される。
注目機構(SEブロック)をコアネットワークに組み込んで重要な特徴の重み付けを行う。
論文 参考訳(メタデータ) (2022-10-31T07:36:48Z) - Effective classification of ecg signals using enhanced convolutional
neural network in iot [0.0]
本稿では、動的ソースルーティング(DSR)とエネルギーリンク品質(REL)に基づくIoTヘルスケアプラットフォームのためのルーティングシステムを提案する。
Deep-ECGは、重要な特徴を抽出するためにディープCNNを使用し、単純かつ高速な距離関数を用いて比較する。
その結果,提案手法は分類精度において他よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-02-08T13:37:23Z) - Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein
Segmentation in CT [45.93021999366973]
肺気道,動脈,静脈の分節に対する畳み込みニューラルネットワーク(CNN)の訓練は困難である。
コントラスト非造影CTにおいて,CNNによる正確な気道および動脈静脈分画法を提案する。
細気管支、動脈、静脈に対して優れた感受性を有する。
論文 参考訳(メタデータ) (2020-12-10T15:56:08Z) - Performance of Dual-Augmented Lagrangian Method and Common Spatial
Patterns applied in classification of Motor-Imagery BCI [68.8204255655161]
運動画像に基づく脳-コンピュータインタフェース(MI-BCI)は、神経リハビリテーションのための画期的な技術になる可能性がある。
使用する脳波信号のノイズの性質のため、信頼性の高いBCIシステムは特徴の最適化と抽出のために特別な手順を必要とする。
論文 参考訳(メタデータ) (2020-10-13T20:50:13Z) - A Computationally Efficient Multiclass Time-Frequency Common Spatial
Pattern Analysis on EEG Motor Imagery [164.93739293097605]
共通空間パターン(CSP)は脳波(EEG)運動画像(MI)の一般的な特徴抽出法である
本研究では,従来のCSPアルゴリズムを改良し,マルチクラスMI分類精度を改善し,計算処理の効率化を図る。
論文 参考訳(メタデータ) (2020-08-25T18:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。