Blueprint First, Model Second: A Framework for Deterministic LLM Workflow
- URL: http://arxiv.org/abs/2508.02721v1
- Date: Fri, 01 Aug 2025 03:10:00 GMT
- Title: Blueprint First, Model Second: A Framework for Deterministic LLM Workflow
- Authors: Libin Qiu, Yuhang Ye, Zhirong Gao, Xide Zou, Junfu Chen, Ziming Gui, Weizhi Huang, Xiaobo Xue, Wenkai Qiu, Kun Zhao,
- Abstract summary: We introduce the Source Code Agent framework, a new paradigm built on the "Blueprint First, Model Second" philosophy.<n>Our framework decouples the workflow logic from the generative model.<n>Our work enables the verifiable and reliable deployment of autonomous agents in applications governed by strict procedural logic.
- Score: 3.9886771197662925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While powerful, the inherent non-determinism of large language model (LLM) agents limits their application in structured operational environments where procedural fidelity and predictable execution are strict requirements. This limitation stems from current architectures that conflate probabilistic, high-level planning with low-level action execution within a single generative process. To address this, we introduce the Source Code Agent framework, a new paradigm built on the "Blueprint First, Model Second" philosophy. Our framework decouples the workflow logic from the generative model. An expert-defined operational procedure is first codified into a source code-based Execution Blueprint, which is then executed by a deterministic engine. The LLM is strategically invoked as a specialized tool to handle bounded, complex sub-tasks within the workflow, but never to decide the workflow's path. We conduct a comprehensive evaluation on the challenging tau-bench benchmark, designed for complex user-tool-rule scenarios. Our results demonstrate that the Source Code Agent establishes a new state-of-the-art, outperforming the strongest baseline by 10.1 percentage points on the average Pass^1 score while dramatically improving execution efficiency. Our work enables the verifiable and reliable deployment of autonomous agents in applications governed by strict procedural logic.
Related papers
- VerifyLLM: LLM-Based Pre-Execution Task Plan Verification for Robots [44.99833362998488]
We propose an architecture for automatically verifying high-level task plans before their execution in simulator or real-world environments.<n>The module uses the reasoning capabilities of the Large Language Models to evaluate logical coherence and identify potential gaps in the plan.<n>We contribute to improving the reliability and efficiency of task planning and addresses the critical need for robust pre-execution verification in autonomous systems.
arXiv Detail & Related papers (2025-07-07T15:31:36Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - FlowAgent: Achieving Compliance and Flexibility for Workflow Agents [31.088578094151178]
FlowAgent is a novel agent framework designed to maintain both compliance and flexibility.<n>Building on PDL, we develop a comprehensive framework that empowers LLMs to manage OOW queries effectively.<n>We present a new evaluation methodology to rigorously assess an LLM agent's ability to handle OOW scenarios.
arXiv Detail & Related papers (2025-02-20T07:59:31Z) - Flow: Modularized Agentic Workflow Automation [53.073598156915615]
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution.<n>However, the effective adjustment of agentic during execution has not been well studied.<n>In this paper, we define an activity-on-vertex (AOV) graph, which allows continuous workflow refinement by agents.<n>Our proposed multi-agent framework achieves efficient concurrent execution of subtasks, effective goal achievement, and enhanced error tolerance.
arXiv Detail & Related papers (2025-01-14T04:35:37Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorfBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.<n>We also present WorfEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.<n>We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - Formally Specifying the High-Level Behavior of LLM-Based Agents [24.645319505305316]
LLMs have emerged as promising tools for solving challenging problems without the need for task-specific finetuned models.
Currently, the design and implementation of such agents is ad hoc, as the wide variety of tasks that LLM-based agents may be applied to naturally means there can be no one-size-fits-all approach to agent design.
We propose a minimalistic generation framework that simplifies the process of building agents.
arXiv Detail & Related papers (2023-10-12T17:24:15Z) - Procedures as Programs: Hierarchical Control of Situated Agents through
Natural Language [81.73820295186727]
We propose a formalism of procedures as programs, a powerful yet intuitive method of representing hierarchical procedural knowledge for agent command and control.
We instantiate this framework on the IQA and ALFRED datasets for NL instruction following.
arXiv Detail & Related papers (2021-09-16T20:36:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.