論文の概要: AgentSight: System-Level Observability for AI Agents Using eBPF
- arxiv url: http://arxiv.org/abs/2508.02736v1
- Date: Sat, 02 Aug 2025 01:43:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.592784
- Title: AgentSight: System-Level Observability for AI Agents Using eBPF
- Title(参考訳): AgentSight: eBPFを用いたAIエージェントのシステムレベル可観測性
- Authors: Yusheng Zheng, Yanpeng Hu, Tong Yu, Andi Quinn,
- Abstract要約: 既存のツールは、エージェントの高レベルな意図(LSMプロンプトを介して)または低レベルな行動(例えば、システムコール)を観察するが、これら2つのビューを関連付けることはできない。
AgentOpsはハイブリッドアプローチを使用して,このセマンティックギャップをブリッジする,AgentOpsオブザーバビリティフレームワークです。
AgentSightはTLS暗号化されたLLMトラフィックをインターセプトしてセマンティックインテントを抽出し、カーネルイベントを監視してシステム全体の効果を観察し、これら2つのストリームをプロセス境界を越えて因果的に関連付ける。
- 参考スコア(独自算出の注目度): 10.37440633887049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern software infrastructure increasingly relies on LLM agents for development and maintenance, such as Claude Code and Gemini-cli. However, these AI agents differ fundamentally from traditional deterministic software, posing a significant challenge to conventional monitoring and debugging. This creates a critical semantic gap: existing tools observe either an agent's high-level intent (via LLM prompts) or its low-level actions (e.g., system calls), but cannot correlate these two views. This blindness makes it difficult to distinguish between benign operations, malicious attacks, and costly failures. We introduce AgentSight, an AgentOps observability framework that bridges this semantic gap using a hybrid approach. Our approach, boundary tracing, monitors agents from outside their application code at stable system interfaces using eBPF. AgentSight intercepts TLS-encrypted LLM traffic to extract semantic intent, monitors kernel events to observe system-wide effects, and causally correlates these two streams across process boundaries using a real-time engine and secondary LLM analysis. This instrumentation-free technique is framework-agnostic, resilient to rapid API changes, and incurs less than 3% performance overhead. Our evaluation shows AgentSight detects prompt injection attacks, identifies resource-wasting reasoning loops, and reveals hidden coordination bottlenecks in multi-agent systems. AgentSight is released as an open-source project at https://github.com/agent-sight/agentsight.
- Abstract(参考訳): 現代のソフトウェアインフラは、Claude CodeやGemini-cliのようなLLMエージェントに開発とメンテナンスを頼りにしている。
しかし、これらのAIエージェントは基本的に従来の決定論的ソフトウェアと異なり、従来の監視とデバッグには大きな課題がある。
既存のツールはエージェントの高レベルのインテント(LSMプロンプトを介して)または低レベルのアクション(例えば、システムコール)を観察するが、これらの2つのビューを関連付けることはできない。
この盲目は、良識のある操作、悪意のある攻撃、そしてコストのかかる失敗を区別することを難しくする。
我々は、ハイブリッドアプローチを使用して、このセマンティックギャップをブリッジするAgentOpsオブザーバビリティフレームワークであるAgentSightを紹介します。
当社のアプローチであるバウンダリトレースは,アプリケーションの外部からのエージェントを,eBPFを使用した安定したシステムインターフェースで監視する。
AgentSightはTLS暗号化されたLLMトラフィックをインターセプトしてセマンティックインテントを抽出し、カーネルイベントを監視してシステム全体の効果を観察し、これら2つのストリームをリアルタイムエンジンと二次LLM分析を使用してプロセス境界を越えて因果的に相関する。
このインスツルメンテーションフリーのテクニックはフレームワークに依存しず、迅速なAPI変更に対して回復力があり、パフォーマンス上のオーバーヘッドは3%未満である。
評価の結果、AgentSightはインジェクション攻撃を検出し、リソース無駄な推論ループを特定し、マルチエージェントシステムにおける隠れ調整ボトルネックを明らかにする。
AgentSightはhttps://github.com/agent-sight/agentsight.comでオープンソースプロジェクトとしてリリースされた。
関連論文リスト
- AgentArmor: Enforcing Program Analysis on Agent Runtime Trace to Defend Against Prompt Injection [8.266563350981984]
大きな言語モデル(LLM)エージェントは、自然言語推論と外部ツールの実行を組み合わせることで、さまざまな問題を解決するための強力な新しいパラダイムを提供する。
本研究では,エージェントランタイムトレースを解析可能なセマンティクスを用いた構造化プログラムとして扱う新しい知見を提案する。
本稿では,エージェントトレースをグラフ中間表現に基づく構造化プログラム依存表現に変換するプログラム解析フレームワークであるAgentArmorを提案する。
論文 参考訳(メタデータ) (2025-08-02T07:59:34Z) - ATAG: AI-Agent Application Threat Assessment with Attack Graphs [23.757154032523093]
本稿では,Attack Graphs (ATAG) を用いたAIエージェントアプリケーションThreatアセスメントを提案する。
ATAGは、AIエージェントアプリケーションに関連するセキュリティリスクを体系的に分析するために設計された、新しいフレームワークである。
マルチエージェントアプリケーションにおけるAIエージェント脅威の積極的な識別と緩和を容易にする。
論文 参考訳(メタデータ) (2025-06-03T13:25:40Z) - SentinelAgent: Graph-based Anomaly Detection in Multi-Agent Systems [11.497269773189254]
大規模言語モデル(LLM)に基づくマルチエージェントシステム(MAS)に適したシステムレベルの異常検出フレームワークを提案する。
本稿では,エージェント間相互作用を動的実行グラフとしてモデル化し,ノード,エッジ,パスレベルでの意味的異常検出を可能にするグラフベースのフレームワークを提案する。
第2に,セキュリティポリシとコンテキスト推論に基づくMAS実行の監視,解析,介入を行うLLMによる監視エージェントである,プラグイン可能なSentinelAgentを導入する。
論文 参考訳(メタデータ) (2025-05-30T04:25:19Z) - CoTGuard: Using Chain-of-Thought Triggering for Copyright Protection in Multi-Agent LLM Systems [55.57181090183713]
我々は、Chain-of-Thought推論内でトリガーベースの検出を活用する著作権保護のための新しいフレームワークであるCoTGuardを紹介する。
具体的には、特定のCoTセグメントをアクティベートし、特定のトリガクエリをエージェントプロンプトに埋め込むことで、未許可コンテンツ再生の中間的推論ステップを監視する。
このアプローチは、協調エージェントシナリオにおける著作権侵害の微細かつ解釈可能な検出を可能にする。
論文 参考訳(メタデータ) (2025-05-26T01:42:37Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
本稿では,間接的なインジェクション脆弱性を自動的に検出し,悪用するための汎用的なブラックボックスファジリングフレームワークであるAgentVigilを提案する。
我々はAgentVigilをAgentDojoとVWA-advの2つの公開ベンチマークで評価し、o3-miniとGPT-4oに基づくエージェントに対して71%と70%の成功率を達成した。
攻撃を現実世界の環境に適用し、悪質なサイトを含む任意のURLに誘導するエージェントをうまく誘導する。
論文 参考訳(メタデータ) (2025-05-09T07:40:17Z) - Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
LLMマルチエージェントシステムにおける障害帰属は、まだ調査が過小評価されており、労働集約的である。
本稿では,3つの自動故障帰属手法の開発と評価を行い,その欠点と欠点を要約する。
最良の方法は、障害に応答するエージェントを特定する際に53.5%の精度を達成するが、故障の特定には14.2%しか役に立たない。
論文 参考訳(メタデータ) (2025-04-30T23:09:44Z) - Les Dissonances: Cross-Tool Harvesting and Polluting in Multi-Tool Empowered LLM Agents [15.15485816037418]
本稿では,マルチツール対応LLMエージェントにおけるタスク制御フローのシステマティックセキュリティ解析について述べる。
複数の攻撃ベクトルを含む新しい脅威であるクロスツールハーベスティングとポリッティング(XTHP)を同定する。
この脅威の影響を理解するために,我々は,XTHP攻撃を受けやすい現実世界のエージェントツールを自動的に検出する動的スキャンツールであるChordを開発した。
論文 参考訳(メタデータ) (2025-04-04T01:41:06Z) - PC-Agent: A Hierarchical Multi-Agent Collaboration Framework for Complex Task Automation on PC [98.82146219495792]
本稿では,PC-Agentという階層型エージェントフレームワークを提案する。
認識の観点からは,現在のMLLMのスクリーンショットコンテンツに対する認識能力の不十分さを克服するために,アクティブ知覚モジュール(APM)を考案する。
意思決定の観点から、複雑なユーザ命令や相互依存サブタスクをより効果的に扱うために、階層的なマルチエージェント協調アーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-20T05:41:55Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
本稿ではエージェント・アズ・ア・ジャッジ(Agent-as-a-Judge)フレームワークを紹介し,エージェント・システムを用いてエージェント・システムの評価を行う。
これはLLM-as-a-Judgeフレームワークの有機的拡張であり、タスク解決プロセス全体の中間フィードバックを可能にするエージェント的特徴を取り入れている。
55のリアルな自動化AI開発タスクのベンチマークであるDevAIを紹介します。
論文 参考訳(メタデータ) (2024-10-14T17:57:02Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
我々は、VisualWebArena上に現実的な脅威モデルを用いて、200の敵タスクと評価スクリプトを手動で作成する。
我々は,クロボックスフロンティアLMを用いた最新のエージェントを,リフレクションやツリーサーチを行うエージェントを含む,壊すことに成功している。
AREを使用して、新しいコンポーネントの追加に伴うロバスト性の変化を厳格に評価しています。
論文 参考訳(メタデータ) (2024-06-18T17:32:48Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
安全ガード要求を満たすか否かを動的に確認し,目標エージェントを保護する最初のガードレールエージェントであるガードアジェントを提案する。
特にGuardAgentは、まず安全ガードの要求を分析してタスクプランを生成し、それからその計画をガードレールコードにマップして実行します。
GuardAgentは、それぞれ98%と83%のガードレール精度を持つ2つのベンチマークにおいて、異なる種類のエージェントに対する違反行為を効果的に抑制することを示した。
論文 参考訳(メタデータ) (2024-06-13T14:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。