論文の概要: The Architecture of Trust: A Framework for AI-Augmented Real Estate Valuation in the Era of Structured Data
- arxiv url: http://arxiv.org/abs/2508.02765v1
- Date: Mon, 04 Aug 2025 05:24:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.617177
- Title: The Architecture of Trust: A Framework for AI-Augmented Real Estate Valuation in the Era of Structured Data
- Title(参考訳): 信頼のアーキテクチャ:構造化データ時代のAIによる不動産評価のためのフレームワーク
- Authors: Petteri Teikari, Mike Jarrell, Maryam Azh, Harri Pesola,
- Abstract要約: Uniform Appraisal dataset (UAD) 3.6の必須2026実装は、住宅資産の評価を物語報告から機械可読形式に変換する。
本稿では、コンピュータビジョン、自然言語処理、自律システムにおけるAIの進歩と並行して、この規制シフトを包括的に分析する。
技術的実装と機関的信頼要件に対処するAI付加評価のための3層フレームワークを開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Uniform Appraisal Dataset (UAD) 3.6's mandatory 2026 implementation transforms residential property valuation from narrative reporting to structured, machine-readable formats. This paper provides the first comprehensive analysis of this regulatory shift alongside concurrent AI advances in computer vision, natural language processing, and autonomous systems. We develop a three-layer framework for AI-augmented valuation addressing technical implementation and institutional trust requirements. Our analysis reveals how regulatory standardization converging with AI capabilities enables fundamental market restructuring with profound implications for professional practice, efficiency, and systemic risk. We make four key contributions: (1) documenting institutional failures including inter-appraiser variability and systematic biases undermining valuation reliability; (2) developing an architectural framework spanning physical data acquisition, semantic understanding, and cognitive reasoning that integrates emerging technologies while maintaining professional oversight; (3) addressing trust requirements for high-stakes financial applications including regulatory compliance, algorithmic fairness, and uncertainty quantification; (4) proposing evaluation methodologies beyond generic AI benchmarks toward domain-specific protocols. Our findings indicate successful transformation requires not merely technological sophistication but careful human-AI collaboration, creating systems that augment rather than replace professional expertise while addressing historical biases and information asymmetries in real estate markets.
- Abstract(参考訳): Uniform Appraisal Dataset (UAD) 3.6の必須の2026実装は、住宅資産の評価を物語報告から機械可読形式に転換する。
本稿では、コンピュータビジョン、自然言語処理、自律システムにおけるAIの進歩と並行して、この規制シフトを包括的に分析する。
技術的実装と機関的信頼要件に対処するAI付加評価のための3層フレームワークを開発する。
我々の分析は、AI能力に集約された規制の標準化が、専門家の実践、効率性、システム的リスクに深く影響して、市場を根本的に再構築することを可能にする方法を明らかにしている。
評価の信頼性を損なうような制度的障害の文書化,(2)専門的監督を維持しつつ新興技術を統合する物理データ取得,意味理解,認知的推論にまたがるアーキテクチャフレームワークの開発,(3)規制コンプライアンス,アルゴリズムフェアネス,不確実性定量化を含む金融アプリケーションに対する信頼性要件への対処,(4)汎用AIベンチマークを超えた評価手法の提案,の4つの主要な貢献を行う。
この結果から, 変革の成功には技術高度化だけでなく, 慎重な人間とAIの連携が必要であり, 不動産市場の歴史的偏見や情報アシンメトリーに対処しながら, 専門知識に取って代わるのではなく, 強化するシステムを構築する必要があることが示唆された。
関連論文リスト
- Web3 x AI Agents: Landscape, Integrations, and Foundational Challenges [29.270251798583182]
Web3テクノロジとAIエージェントの収束は、分散化されたエコシステムを再形成する、急速に進化するフロンティアを表している。
本稿では, ランドスケープ, 経済, ガバナンス, セキュリティ, 信頼メカニズムの5つの重要な側面について, Web3 と AI エージェントの交わりについて, 初めてかつ最も包括的な分析を行った。
論文 参考訳(メタデータ) (2025-08-04T15:44:58Z) - Rethinking Data Protection in the (Generative) Artificial Intelligence Era [115.71019708491386]
現代の(生産的な)AIモデルやシステムに生じる多様な保護ニーズを捉える4段階の分類法を提案する。
当社のフレームワークは、データユーティリティとコントロールのトレードオフに関する構造化された理解を提供し、AIパイプライン全体にわたっています。
論文 参考訳(メタデータ) (2025-07-03T02:45:51Z) - The AI Imperative: Scaling High-Quality Peer Review in Machine Learning [49.87236114682497]
AIによるピアレビューは、緊急の研究とインフラの優先事項になるべきだ、と私たちは主張する。
我々は、事実検証の強化、レビュアーのパフォーマンスの指導、品質改善における著者の支援、意思決定におけるAC支援におけるAIの具体的な役割を提案する。
論文 参考訳(メタデータ) (2025-06-09T18:37:14Z) - Explainable AI Systems Must Be Contestable: Here's How to Make It Happen [2.5875936082584623]
本稿では、説明可能なAIにおける競合性の最初の厳密な形式的定義について述べる。
我々は、ヒューマン中心のインターフェース、技術プロセス、組織アーキテクチャにまたがる、設計やポストホックメカニズムのモジュール化されたフレームワークを紹介します。
私たちの作業は実践者に、真のリコースと説明責任をAIシステムに組み込むためのツールを提供しています。
論文 参考訳(メタデータ) (2025-06-02T13:32:05Z) - Enterprise Architecture as a Dynamic Capability for Scalable and Sustainable Generative AI adoption: Bridging Innovation and Governance in Large Organisations [55.2480439325792]
生成人工知能(Generative Artificial Intelligence)は、イノベーションを促進し、多くの産業におけるガバナンスを再形成する可能性を持つ強力な新技術である。
しかし、テクノロジの複雑さ、ガバナンスのギャップ、リソースのミスアライメントなど、GenAIをスケールする上で大きな課題に直面している。
本稿では、大企業におけるGenAI導入の複雑な要件をエンタープライズアーキテクチャ管理が満たす方法について検討する。
論文 参考訳(メタデータ) (2025-05-09T07:41:33Z) - Human-AI Governance (HAIG): A Trust-Utility Approach [0.0]
本稿では,人間とAIの関係が進化する中で,信頼のダイナミクスを分析するためのHAIGフレームワークを紹介する。
我々の分析は、自己監督、推論権限、分散意思決定の技術的進歩が、不均一な信頼の進化をいかに引き起こすかを明らかにする。
論文 参考訳(メタデータ) (2025-05-03T01:57:08Z) - On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [334.48358909967845]
Generative Foundation Models (GenFMs) がトランスフォーメーションツールとして登場した。
彼らの広く採用されていることは、次元の信頼に関する重要な懸念を提起する。
本稿では,3つの主要なコントリビューションを通じて,これらの課題に対処するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2025-02-20T06:20:36Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
本稿ではAI製品リスクと信頼性を評価するための業界標準ベンチマークとして,AIluminate v1.0を紹介する。
このベンチマークは、危険、違法、または望ましくない行動を12の危険カテゴリーで引き起こすように設計されたプロンプトに対するAIシステムの抵抗を評価する。
論文 参考訳(メタデータ) (2025-02-19T05:58:52Z) - Meta-Sealing: A Revolutionizing Integrity Assurance Protocol for Transparent, Tamper-Proof, and Trustworthy AI System [0.0]
この研究は、AIシステムの整合性検証を根本的に変更する暗号フレームワークであるMeta-Sealingを紹介する。
このフレームワークは、高度な暗号と分散検証を組み合わせることで、数学的厳密さと計算効率の両方を達成する、暗黙の保証を提供する。
論文 参考訳(メタデータ) (2024-10-31T15:31:22Z) - Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
本稿では、AIが倫理的で、制御可能で、実行可能で、望ましいものであることを保証するフレームワークを紹介する。
異なるケーススタディは、学術と実践の両方の環境でAIを統合することで、このフレームワークを検証する。
論文 参考訳(メタデータ) (2024-09-25T12:39:28Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。