論文の概要: Agentic Privacy-Preserving Machine Learning
- arxiv url: http://arxiv.org/abs/2508.02836v1
- Date: Wed, 30 Jul 2025 08:20:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.653468
- Title: Agentic Privacy-Preserving Machine Learning
- Title(参考訳): エージェントプライバシ保護機械学習
- Authors: Mengyu Zhang, Zhuotao Liu, Jingwen Huang, Xuanqi Liu,
- Abstract要約: プライバシ保護機械学習(PPML)は、AIにおけるデータのプライバシを保証するために重要である。
本稿では,LPMにおけるPPMLの実現を目的として,Agentic-PPMLという新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.695349155812586
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Privacy-preserving machine learning (PPML) is critical to ensure data privacy in AI. Over the past few years, the community has proposed a wide range of provably secure PPML schemes that rely on various cryptography primitives. However, when it comes to large language models (LLMs) with billions of parameters, the efficiency of PPML is everything but acceptable. For instance, the state-of-the-art solution for confidential LLM inference represents at least 10,000-fold slower performance compared to plaintext inference. The performance gap is even larger when the context length increases. In this position paper, we propose a novel framework named Agentic-PPML to make PPML in LLMs practical. Our key insight is to employ a general-purpose LLM for intent understanding and delegate cryptographically secure inference to specialized models trained on vertical domains. By modularly separating language intent parsing - which typically involves little or no sensitive information - from privacy-critical computation, Agentic-PPML completely eliminates the need for the LLMs to process the encrypted prompts, enabling practical deployment of privacy-preserving LLM-centric services.
- Abstract(参考訳): プライバシ保護機械学習(PPML)は、AIにおけるデータのプライバシを保証するために重要である。
過去数年間、コミュニティは様々な暗号プリミティブに依存する証明可能な安全なPPMLスキームを提案してきた。
しかし、数十億のパラメータを持つ大規模言語モデル(LLM)に関しては、PPMLの効率は、ほとんど受け入れられない。
例えば、秘密のLLM推論のための最先端のソリューションは、平文推論と比較して少なくとも1万倍遅い性能を示している。
コンテキスト長が大きくなると、パフォーマンスギャップはさらに大きくなる。
本稿では,LPMにおけるPPMLを実現するための新しいフレームワークであるAgentic-PPMLを提案する。
我々の重要な洞察は、暗号化的にセキュアな推論を垂直領域で訓練された特殊なモデルに委譲するために汎用LLMを使用することである。
Agentic-PPMLは、モジュール的に言語インテント解析(通常は機密情報はほとんど、あるいは全く含まない)をプライバシクリティカルな計算から切り離すことで、暗号化プロンプトを処理するためのLLMを完全に排除し、プライバシ保護のLLM中心サービスの実践的なデプロイを可能にします。
関連論文リスト
- Federated Learning-Enabled Hybrid Language Models for Communication-Efficient Token Transmission [87.68447072141402]
ハイブリッド言語モデル(HLM)は、エッジデバイス上でのSLM(Small Language Model)の低レイテンシ効率と、集中型サーバ上でのLLM(Large Language Model)の高精度を組み合わせたものである。
我々は、不確実性を考慮した推論とフェデレートラーニング(FL)を統合する通信効率の高いHLMフレームワークであるFedHLMを提案する。
論文 参考訳(メタデータ) (2025-06-30T02:56:11Z) - A General Pseudonymization Framework for Cloud-Based LLMs: Replacing Privacy Information in Controlled Text Generation [0.6699777383856287]
ChatGPTサービスはクラウドベースの大規模言語モデル(LLM)を活用する
プライバシの懸念は、モデルプロバイダによってプロンプトが送信され、処理されるときに生じる。
クラウドベースのLCMに適用可能な一般的な擬似化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-21T06:15:53Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - Encryption-Friendly LLM Architecture [11.386436468650016]
ホモモルフィック暗号(homomorphic encryption, HE)は、暗号状態における算術演算をサポートする暗号プロトコルである。
本稿では,パーソナライズされた(プライベートな)微調整による推論を重視した改良型HE-Friendly Transformerアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-03T13:48:35Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Locally Differentially Private In-Context Learning [8.659575019965152]
大規模な事前学習言語モデル(LLM)は、驚くべきインコンテキスト学習(ICL)能力を示している。
本稿では,文脈内学習(LDP-ICL)の局所的差分的フレームワークを提案する。
変圧器の勾配勾配降下による文脈内学習のメカニズムを考慮し,LDP-ICLにおけるプライバシとユーティリティのトレードオフ分析を行う。
論文 参考訳(メタデータ) (2024-05-07T06:05:43Z) - BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models [56.89958793648104]
大規模言語モデル(LLM)は多用途であり、多様なタスクに対処することができる。
従来のアプローチでは、ドメイン固有のデータによる継続的な事前トレーニングを行うか、一般的なLLMをサポートするために検索拡張を採用する。
BLADEと呼ばれる新しいフレームワークを提案する。このフレームワークは、小さなDomain-spEcificモデルでブラックボックスのLArge言語モデルを拡張する。
論文 参考訳(メタデータ) (2024-03-27T08:57:21Z) - ConfusionPrompt: Practical Private Inference for Online Large Language Models [3.8134804426693094]
最先端の大規模言語モデル(LLM)は一般的にオンラインサービスとしてデプロイされ、ユーザーはクラウドサーバーに詳細なプロンプトを送信する必要がある。
我々は,従来のプロンプトを小さなサブプロンプトに分解することで,ユーザのプライバシを保護する,プライベートLLM推論のための新しいフレームワークであるConfusionPromptを紹介する。
コンフュージョンプロンプトは,オープンソースモデルと摂動に基づく手法を用いて,局所的推論手法よりもはるかに高い実用性を実現することを示す。
論文 参考訳(メタデータ) (2023-12-30T01:26:42Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
大規模言語モデル(LLM)は、言語理解と生成能力に優れた自然言語処理(NLP)を備えています。
それらのパフォーマンスは、関連するデータへの限られた露出のために専門的な知識を必要とするドメイン固有のタスクに最適であるかもしれない。
本稿では,LLMに関連知識にアクセスするための知識誘導モジュールを組み込んだ新しいPKGフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-08T15:05:16Z) - SoK: Privacy Preserving Machine Learning using Functional Encryption:
Opportunities and Challenges [1.2183405753834562]
プライバシー保護機械学習(PPML)アプリケーションのための内積-FEおよび準積-FEベースの機械学習モデルに焦点を当てる。
私たちの知る限りでは、FEベースのPPMLアプローチを体系化する最初の作業です。
論文 参考訳(メタデータ) (2022-04-11T14:15:36Z) - Privacy-Preserving XGBoost Inference [0.6345523830122165]
採用の大きな障壁は、予測クエリの繊細な性質である。
プライバシ保護機械学習(PPML)の中心的な目標は、暗号化されたクエリをリモートMLサービスに送信できるようにすることだ。
プライバシを保存するXGBoost予測アルゴリズムを提案し,AWS SageMaker上で実証的に評価を行った。
論文 参考訳(メタデータ) (2020-11-09T21:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。