論文の概要: Coherent Multimodal Reasoning with Iterative Self-Evaluation for Vision-Language Models
- arxiv url: http://arxiv.org/abs/2508.02886v1
- Date: Mon, 04 Aug 2025 20:33:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.675673
- Title: Coherent Multimodal Reasoning with Iterative Self-Evaluation for Vision-Language Models
- Title(参考訳): 視覚言語モデルに対する反復自己評価を用いたコヒーレントマルチモーダル推論
- Authors: Wenjie Luo, Ruocheng Li, Shanshan Zhu, Julian Perry,
- Abstract要約: 大規模言語モデル (LLMs) と視覚言語モデル (LVLMs) は複雑で多段階のクロスモーダルな常識推論タスクに苦しむ。
我々は,LVLMの共通感覚推論能力を高める新しいアプローチであるコヒーレント・マルチモーダル推論フレームワーク(CMRF)を提案する。
CMRFは複雑なクエリを分解し、ステップバイステップの推論を生成し、エラーを自己修正することで人間の問題解決を模倣する。
- 参考スコア(独自算出の注目度): 4.064135211977999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant advancements, current large language models (LLMs) and vision-language models (LVLMs) continue to struggle with complex, multi-step, cross-modal common sense reasoning tasks, often exhibiting a lack of "deliberative thinking." They tend to rely on superficial associations rather than deep, chained inference, particularly when integrating visual information with abstract concepts. To address this, we propose the Coherent Multimodal Reasoning Framework (CMRF), a novel approach that enhances LVLMs' common sense reasoning capabilities through an iterative, self-evaluating inference mechanism. CMRF mimics human problem-solving by decomposing complex queries, generating step-by-step inferences, and self-correcting errors. Our framework integrates three key modules: a Reasoning Decomposition Unit (RDU) for breaking down problems into sub-questions, a Contextual Inference Engine (CIE) for contextual inference, and a Coherence Assessment Module (CAM) for evaluating logical consistency and confidence. Coupled with an Adaptive Iterative Refinement strategy, CMRF systematically refines its reasoning paths. Built upon LLaVA-1.6-34B and trained on a novel Multimodal Daily Activity Reasoning (MDAR) dataset, CMRF achieves state-of-the-art performance among open-source LVLMs on challenging benchmarks like VCR, A-OKVQA, and DailyLife-MRC. It attains an average accuracy of 69.4%, surpassing the best open-source baseline by +2.4 percentage points, with particular strength in complex reasoning scenarios. Extensive ablation studies and human evaluations confirm the critical contributions of each module and the effectiveness of iterative refinement in fostering more coherent and accurate reasoning.
- Abstract(参考訳): 大幅な進歩にもかかわらず、現在の大規模言語モデル(LLM)と視覚言語モデル(LVLM)は複雑で多段階のクロスモーダルな共通感覚推論タスクに苦慮し続けており、しばしば「熟考的思考」の欠如を示している。
特に視覚情報と抽象概念を統合する際には、深い連鎖推論よりも表面的な関連に頼る傾向がある。
そこで本研究では,LVLMの共通感覚推論能力を高める手法として,反復的自己評価推論機構を用いたコヒーレントマルチモーダル推論フレームワーク(CMRF)を提案する。
CMRFは複雑なクエリを分解し、ステップバイステップの推論を生成し、エラーを自己修正することで人間の問題解決を模倣する。
我々のフレームワークは3つの重要なモジュールを統合している: 問題をサブクエストに分割するReasoning Decomposition Unit(RDU)、コンテキスト推論のためのContextual Inference Engine(CIE)、論理的一貫性と信頼性を評価するCoherence Assessment Module(CAM)。
アダプティブ・イテレーティブ・リファインメント(Adaptive Iterative Refinement)戦略と組み合わせて、CMRFは推論経路を体系的に洗練する。
LLaVA-1.6-34B上に構築され、MDAR(Multimodal Daily Activity Reasoning)データセットでトレーニングされたCMRFは、VCR、A-OKVQA、DailyLife-MRCといった挑戦的なベンチマークに基づいて、オープンソースのLVLM間で最先端のパフォーマンスを達成している。
平均精度は69.4%で、オープンソースのベースラインを+2.4ポイント上回り、複雑な推論シナリオでは特に強みがある。
広範囲にわたるアブレーション研究と人的評価は、各モジュールの批判的貢献と、より一貫性と正確な推論を促進するための反復的洗練の有効性を裏付けるものである。
関連論文リスト
- CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG [53.950029990391066]
マルチモーダルRAG(CoRe-MMRAG)のためのクロスソース知識textbfReconciliation
本稿では,知識ソース間の不整合を効果的に解決する新しいエンドツーエンドフレームワークを提案する。
KB-VQAベンチマークの実験では、CoRe-MMRAGはベースライン法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2025-06-03T07:32:40Z) - SRPO: Enhancing Multimodal LLM Reasoning via Reflection-Aware Reinforcement Learning [25.02860760920562]
MLLM(Multimodal large language model)は、タスク推論において有望な能力を示すが、明示的な自己回帰と自己補正を必要とする複雑な問題に悩まされている。
既存のリフレクション手法は単純で、意味のあるインストラクティブフィードバックを生成するのに苦労している。
本稿では,2段階のリフレクション対応強化学習フレームワークであるグループ相対ポリシー最適化 (SRPO) を用いたマルチモーダル自己回帰強化推論を提案する。
論文 参考訳(メタデータ) (2025-06-02T14:21:44Z) - Infi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models [45.15161506154318]
Infi-MMRは、マルチモーダル小言語モデルの推論能力を体系的に解放するフレームワークである。
第1フェーズであるFoundational Reasoning Activationは、高品質なテキスト推論データセットを活用して、モデルの論理推論能力を活性化し、強化する。
第2のフェーズであるクロスモーダル推論適応は、キャプション拡張されたマルチモーダルデータを使用して、推論スキルをマルチモーダルコンテキストにプログレッシブに転送する。
第3フェーズであるMultimodal Reasoning Enhancementでは、言語バイアスを緩和し、堅牢なクロスモーダル推論を促進するために、キュレートされたキャプションフリーなマルチモーダルデータを採用している。
論文 参考訳(メタデータ) (2025-05-29T04:51:56Z) - Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models [79.52467430114805]
推論は知性の中心にあり、決定し、結論を導き、ドメインをまたいで一般化する能力を形成する。
人工知能において、システムがオープンで不確実でマルチモーダルな環境でますます機能するにつれて、推論は堅牢で適応的な行動を可能にするために不可欠となる。
大規模マルチモーダル推論モデル(LMRM)は、テキスト、画像、オーディオ、ビデオなどのモダリティを統合し、複雑な推論機能をサポートする、有望なパラダイムとして登場した。
論文 参考訳(メタデータ) (2025-05-08T03:35:23Z) - Reinforcing Thinking through Reasoning-Enhanced Reward Models [6.636512424910708]
大規模言語モデル(LLM)は、推論時思考による複雑な多段階推論において大きな可能性を秘めている。
LLMは、知識境界に対する自己認識が限られているため、いつ思考をやめるかを決めるのに苦労する。
この研究は、LLM自身の推論プロセスを合成行動データに蒸留することで、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-12-31T04:50:15Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - Vision-Language Models Can Self-Improve Reasoning via Reflection [20.196406628954303]
CoT(Chain-of-Thought)は,大規模言語モデル(LLM)の推論能力の向上を実証した。
本稿では,自己学習フレームワークR3Vを提案する。このフレームワークは,CoTレーショナル上でのリフレクションにより,モデルの視覚言語推論を反復的に強化する。
提案手法は, 生成した解に対する自己回帰をサポートし, テスト時間計算による性能向上を図っている。
論文 参考訳(メタデータ) (2024-10-30T14:45:00Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
RMR(Retrieval Meets Reasoning)と呼ばれる新しいマルチモーダルRAGフレームワークについて紹介する。
RMRフレームワークは、最も関連性の高い問合せ対を特定するために、バイモーダル検索モジュールを使用する。
これは、ベンチマークデータセットのスペクトルにわたって様々なビジョン言語モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-05-31T14:23:49Z) - HGOT: Hierarchical Graph of Thoughts for Retrieval-Augmented In-Context Learning in Factuality Evaluation [20.178644251662316]
本稿では,文脈内学習における関連する文節の検索を促進するために,階層的思考グラフ(HGOT)を導入する。
このフレームワークは、複雑なクエリを管理可能なサブクエリに分割する、分割/クエリ戦略を採用している。
それは、最近提案された引用リコールと精度の指標を取り入れた、回答の選択のための自己一貫性の過半数投票を洗練する。
論文 参考訳(メタデータ) (2024-02-14T18:41:19Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
既成のLarge Language Models (LLM) の推論能力を高めるため, 単純で汎用的で効果的なプロンプト手法であるRe2を導入する。
CoT (Chain-of-Thought) など、ほとんどの思考を刺激する手法とは異なり、Re2 は質問を2回処理することで入力に焦点を移し、理解プロセスを強化する。
提案手法の有効性と汎用性を検証するため,14のデータセットにまたがる広範囲な推論ベンチマークでRe2を評価した。
論文 参考訳(メタデータ) (2023-09-12T14:36:23Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。