REFLECT: Rectified Flows for Efficient Brain Anomaly Correction Transport
- URL: http://arxiv.org/abs/2508.02889v1
- Date: Mon, 04 Aug 2025 20:35:19 GMT
- Title: REFLECT: Rectified Flows for Efficient Brain Anomaly Correction Transport
- Authors: Farzad Beizaee, Sina Hajimiri, Ismail Ben Ayed, Gregory Lodygensky, Christian Desrosiers, Jose Dolz,
- Abstract summary: Unsupervised anomaly detection (UAD) in brain imaging is crucial for identifying pathologies without the need for labeled data.<n>We introduce REFLECT, a novel framework that leverages rectified flows to establish a direct, linear trajectory for correcting abnormal MR images.<n>Our method efficiently corrects brain anomalies and can precisely localize anomalies by detecting discrepancies between anomalous input and corrected counterpart.
- Score: 23.58830094797698
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unsupervised anomaly detection (UAD) in brain imaging is crucial for identifying pathologies without the need for labeled data. However, accurately localizing anomalies remains challenging due to the intricate structure of brain anatomy and the scarcity of abnormal examples. In this work, we introduce REFLECT, a novel framework that leverages rectified flows to establish a direct, linear trajectory for correcting abnormal MR images toward a normal distribution. By learning a straight, one-step correction transport map, our method efficiently corrects brain anomalies and can precisely localize anomalies by detecting discrepancies between anomalous input and corrected counterpart. In contrast to the diffusion-based UAD models, which require iterative stochastic sampling, rectified flows provide a direct transport map, enabling single-step inference. Extensive experiments on popular UAD brain segmentation benchmarks demonstrate that REFLECT significantly outperforms state-of-the-art unsupervised anomaly detection methods. The code is available at https://github.com/farzad-bz/REFLECT.
Related papers
- MAD-AD: Masked Diffusion for Unsupervised Brain Anomaly Detection [15.572896213775438]
Unsupervised anomaly detection in brain images is crucial for identifying injuries and pathologies without access to labels.<n>We propose a novel approach that incorporates masking within diffusion models, leveraging their generative capabilities to learn robust representations of normal brain anatomy.<n>Our method surpasses existing unsupervised anomaly detection techniques, demonstrating superior performance in generating accurate normal counterparts and localizing anomalies.
arXiv Detail & Related papers (2025-02-24T08:11:29Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications.
An inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion.
We propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow.
Our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%.
arXiv Detail & Related papers (2023-08-29T13:38:35Z) - One-Step Detection Paradigm for Hyperspectral Anomaly Detection via
Spectral Deviation Relationship Learning [17.590080772567678]
Hyperspectral anomaly detection involves identifying the targets that deviate spectrally from their surroundings.
The current deep detection models are optimized to complete a proxy task, such as background reconstruction or generation.
In this paper, an unsupervised transferred direct detection model is proposed, which is optimized directly for the anomaly detection task.
arXiv Detail & Related papers (2023-03-22T06:41:09Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - Dual-distribution discrepancy with self-supervised refinement for
anomaly detection in medical images [29.57501199670898]
We introduce one-class semi-supervised learning (OC-SSL) to utilize known normal and unlabeled images for training.
Ensembles of reconstruction networks are designed to model the distribution of normal images and the distribution of both normal and unlabeled images.
We propose a new perspective on self-supervised learning, which is designed to refine the anomaly scores rather than detect anomalies directly.
arXiv Detail & Related papers (2022-10-09T11:18:45Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - DR{\AE}M -- A discriminatively trained reconstruction embedding for
surface anomaly detection [14.234783431842542]
We propose a discriminatively trained reconstruction anomaly embedding model (DRAEM)
DRAEM learns a joint representation of an anomalous image and its anomaly-free reconstruction, while simultaneously learning a decision boundary between normal and anomalous examples.
On the challenging MVTec anomaly detection dataset, DRAEM outperforms the current state-of-the-art unsupervised methods by a large margin.
arXiv Detail & Related papers (2021-08-17T13:17:29Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
Unsupervised anomaly detection (UAD) learns one-class classifiers exclusively with normal (i.e., healthy) images.
We propose a novel self-supervised representation learning method, called Constrained Contrastive Distribution learning for anomaly detection (CCD)
Our method outperforms current state-of-the-art UAD approaches on three different colonoscopy and fundus screening datasets.
arXiv Detail & Related papers (2021-03-05T01:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.