DR{\AE}M -- A discriminatively trained reconstruction embedding for
surface anomaly detection
- URL: http://arxiv.org/abs/2108.07610v1
- Date: Tue, 17 Aug 2021 13:17:29 GMT
- Title: DR{\AE}M -- A discriminatively trained reconstruction embedding for
surface anomaly detection
- Authors: Vitjan Zavrtanik, Matej Kristan, Danijel Sko\v{c}aj
- Abstract summary: We propose a discriminatively trained reconstruction anomaly embedding model (DRAEM)
DRAEM learns a joint representation of an anomalous image and its anomaly-free reconstruction, while simultaneously learning a decision boundary between normal and anomalous examples.
On the challenging MVTec anomaly detection dataset, DRAEM outperforms the current state-of-the-art unsupervised methods by a large margin.
- Score: 14.234783431842542
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Visual surface anomaly detection aims to detect local image regions that
significantly deviate from normal appearance. Recent surface anomaly detection
methods rely on generative models to accurately reconstruct the normal areas
and to fail on anomalies. These methods are trained only on anomaly-free
images, and often require hand-crafted post-processing steps to localize the
anomalies, which prohibits optimizing the feature extraction for maximal
detection capability. In addition to reconstructive approach, we cast surface
anomaly detection primarily as a discriminative problem and propose a
discriminatively trained reconstruction anomaly embedding model (DRAEM). The
proposed method learns a joint representation of an anomalous image and its
anomaly-free reconstruction, while simultaneously learning a decision boundary
between normal and anomalous examples. The method enables direct anomaly
localization without the need for additional complicated post-processing of the
network output and can be trained using simple and general anomaly simulations.
On the challenging MVTec anomaly detection dataset, DRAEM outperforms the
current state-of-the-art unsupervised methods by a large margin and even
delivers detection performance close to the fully-supervised methods on the
widely used DAGM surface-defect detection dataset, while substantially
outperforming them in localization accuracy.
Related papers
- GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Noise-to-Norm Reconstruction for Industrial Anomaly Detection and
Localization [5.101905755052051]
Anomaly detection has a wide range of applications and is especially important in industrial quality inspection.
Reconstruction-based methods use reconstruction errors to detect anomalies without considering positional differences between samples.
In this study, a reconstruction-based method using the noise-to-norm paradigm is proposed, which avoids the invariant reconstruction of anomalous regions.
arXiv Detail & Related papers (2023-07-06T08:06:48Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
Anomaly detection suffered from the lack of anomalies due to the diversity of abnormalities and the difficulties of obtaining large-scale anomaly data.
We propose Adversarial Generative Anomaly Detection (AGAD), a self-contrast-based anomaly detection paradigm.
Our method generates pseudo-anomaly data for both supervised and semi-supervised anomaly detection scenarios.
arXiv Detail & Related papers (2023-04-09T10:40:02Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
We propose a framework called Prototypical Residual Network (PRN)
PRN learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions.
We present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies.
arXiv Detail & Related papers (2022-12-05T05:03:46Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Domain-Generalized Textured Surface Anomaly Detection [29.88664324332402]
Anomaly detection aims to identify abnormal data that deviates from the normal ones, while requiring a sufficient amount of normal data to train the model for performing this task.
In this paper, we address the task of domain-generalized textured surface anomaly detection.
Our model is expected to be generalized to an unseen textured surface of interest, in which only a small number of normal data can be observed during testing.
arXiv Detail & Related papers (2022-03-23T10:01:35Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Anomaly Detection on X-Rays Using Self-Supervised Aggregation Learning [16.854288765350283]
SALAD is an end-to-end deep self-supervised methodology for anomaly detection on X-Ray images.
The proposed method is based on an optimization strategy in which a deep neural network is encouraged to represent prototypical local patterns.
Our anomaly score is then derived by measuring similarity to a weighted combination of normal prototypical patterns within a memory bank.
arXiv Detail & Related papers (2020-10-19T20:49:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.