論文の概要: Engineered over Emergent Communication in MARL for Scalable and Sample-Efficient Cooperative Task Allocation in a Partially Observable Grid
- arxiv url: http://arxiv.org/abs/2508.02912v1
- Date: Mon, 04 Aug 2025 21:29:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.688446
- Title: Engineered over Emergent Communication in MARL for Scalable and Sample-Efficient Cooperative Task Allocation in a Partially Observable Grid
- Title(参考訳): MARLの創発的コミュニケーションによる部分観測可能なグリッドにおけるスケーラブルで高効率な協調作業割当
- Authors: Brennen A. Hill, Mant Koh En Wei, Thangavel Jishnuanandh,
- Abstract要約: 協調型マルチエージェント強化学習(MARL)環境における学習と工学的コミュニケーション戦略の有効性を比較した。
学習したアプローチでは、エージェントがニューラルネットワークを介してメッセージとアクションを同時に生成するLearned Direct Communication (LDC)を導入する。
Intention Communicationは,Imagined Trajectory Generation Module (ITGM) とMessage Generation Network (MGN) を用いて,予測される将来状態に基づいてメッセージを定式化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We compare the efficacy of learned versus engineered communication strategies in a cooperative multi-agent reinforcement learning (MARL) environment. For the learned approach, we introduce Learned Direct Communication (LDC), where agents generate messages and actions concurrently via a neural network. Our engineered approach, Intention Communication, employs an Imagined Trajectory Generation Module (ITGM) and a Message Generation Network (MGN) to formulate messages based on predicted future states. Both strategies are evaluated on their success rates in cooperative tasks under fully and partially observable conditions. Our findings indicate that while emergent communication is viable, the engineered approach demonstrates superior performance and scalability, particularly as environmental complexity increases.
- Abstract(参考訳): 協調型マルチエージェント強化学習(MARL)環境における学習と工学的コミュニケーション戦略の有効性を比較した。
学習したアプローチでは、エージェントがニューラルネットワークを介してメッセージとアクションを同時に生成するLearned Direct Communication (LDC)を導入する。
Intention Communicationは,Imagined Trajectory Generation Module (ITGM) とMessage Generation Network (MGN) を用いて,予測される将来状態に基づいたメッセージの定式化を行う。
両戦略は、完全かつ部分的に観察可能な条件下での協調作業における成功率に基づいて評価される。
以上の結果から,創発的コミュニケーションは実現可能であるものの,特に環境の複雑さが増大するにつれて,優れた性能と拡張性を示すことが示唆された。
関連論文リスト
- Exponential Topology-enabled Scalable Communication in Multi-agent Reinforcement Learning [9.48183472865413]
協調型マルチエージェント強化学習(MARL)のためのスケーラブルな通信プロトコルを開発する。
本稿では,この指数的トポロジを利用して,その小径特性と小径特性を活用し,エージェント間の迅速な情報伝達を実現することを提案する。
MAgentやInfrastructure Management Planningといった大規模協調型ベンチマークの実験は、ExpoCommの優れた性能と堅牢なゼロショット転送性を示している。
論文 参考訳(メタデータ) (2025-02-27T03:15:31Z) - Token Communications: A Large Model-Driven Framework for Cross-modal Context-aware Semantic Communications [78.80966346820553]
我々は、生成意味コミュニケーション(GenSC)において、クロスモーダルなコンテキスト情報を活用するための大規模なモデル駆動フレームワークであるトークン通信(TokCom)を紹介する。
本稿では,GFM/MLLMをベースとしたトークン処理をセマンティック通信システムに組み込む方法について検討し,将来無線ネットワークの様々な層において効率的なTokComを実現する上での鍵となる原則について述べる。
論文 参考訳(メタデータ) (2025-02-17T18:14:18Z) - Networked Agents in the Dark: Team Value Learning under Partial Observability [3.8779763612314633]
ネットワークエージェントのための協調型マルチエージェント強化学習(MARL)手法を提案する。
完全な状態情報や共同観測に依存する従来の手法とは対照的に、我々のエージェントは部分観測可能性の下で共有目的に到達する方法を学ぶ必要がある。
トレーニング中、個々の報酬を収集し、ローカルコミュニケーションを通じてチームの価値関数を近似し、協調行動をもたらす。
論文 参考訳(メタデータ) (2025-01-15T13:01:32Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Generalising Multi-Agent Cooperation through Task-Agnostic Communication [7.380444448047908]
協調型マルチロボット問題におけるMARL(Multi-agent reinforcement learning)の既存のコミュニケーション手法はほとんどタスク固有であり、各タスクごとに新しいコミュニケーション戦略を訓練する。
与えられた環境内の任意のタスクに適用可能な通信戦略を導入することで、この非効率性に対処する。
我々の目的は、可変数のエージェント観測から固定サイズの潜在マルコフ状態を学ぶことである。
本手法は,コミュニケーション戦略を微調整することなく,新しいタスクへのシームレスな適応が可能であり,トレーニング中よりも多くのエージェントへのスケーリングを優雅にサポートし,環境におけるアウト・オブ・ディストリビューションイベントを検出する。
論文 参考訳(メタデータ) (2024-03-11T14:20:13Z) - Learning Multi-Agent Communication with Contrastive Learning [3.816854668079928]
本稿では,コミュニケーション的メッセージが環境状態の異なる不完全なビューと見なされる,別の視点を紹介する。
送信したメッセージと受信したメッセージの関係を調べることで,コントラスト学習を用いてコミュニケーションを学ぶことを提案する。
通信環境において,本手法は性能と学習速度の両面で,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-03T23:51:05Z) - Centralized Training with Hybrid Execution in Multi-Agent Reinforcement
Learning [7.163485179361718]
マルチエージェント強化学習(MARL)におけるハイブリッド実行の導入
MARLは、エージェントが任意の通信レベルを持つ協調タスクを実行時に完了させることを目標とする新しいパラダイムである。
我々は,自動回帰予測モデルを用いたMAROを集中的に訓練し,行方不明者の観察を推定する手法を提案する。
論文 参考訳(メタデータ) (2022-10-12T14:58:32Z) - Cooperative Policy Learning with Pre-trained Heterogeneous Observation
Representations [51.8796674904734]
事前訓練された異種観察表現を用いた新たな協調学習フレームワークを提案する。
エンコーダ-デコーダに基づくグラフアテンションを用いて、複雑な相互作用と異種表現を学習する。
論文 参考訳(メタデータ) (2020-12-24T04:52:29Z) - Communication-Efficient and Distributed Learning Over Wireless Networks:
Principles and Applications [55.65768284748698]
機械学習(ML)は、第5世代(5G)通信システムなどのための有望なイネーブルである。
本稿では、関連するコミュニケーションとMLの原則を概観し、選択したユースケースでコミュニケーション効率と分散学習フレームワークを提示することを目的とする。
論文 参考訳(メタデータ) (2020-08-06T12:37:14Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。