論文の概要: Achieving Limited Adaptivity for Multinomial Logistic Bandits
- arxiv url: http://arxiv.org/abs/2508.03072v1
- Date: Tue, 05 Aug 2025 04:43:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.777321
- Title: Achieving Limited Adaptivity for Multinomial Logistic Bandits
- Title(参考訳): 多項ロジスティック帯域に対する限定適応性の実現
- Authors: Sukruta Prakash Midigeshi, Tanmay Goyal, Gaurav Sinha,
- Abstract要約: バッチ処理と滅多に変化しないパラダイムで動作させるアルゴリズムを2つ提案する。
B-MNL-CB は $tildeO(sqrtT)$ regret を達成する。
RS-MNLは逆向きに生成されたコンテキストで動作し、$tildeO(sqrtT)$ regretを$tildeO(log T)$ポリシー更新で達成することができる。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multinomial Logistic Bandits have recently attracted much attention due to their ability to model problems with multiple outcomes. In this setting, each decision is associated with many possible outcomes, modeled using a multinomial logit function. Several recent works on multinomial logistic bandits have simultaneously achieved optimal regret and computational efficiency. However, motivated by real-world challenges and practicality, there is a need to develop algorithms with limited adaptivity, wherein we are allowed only $M$ policy updates. To address these challenges, we present two algorithms, B-MNL-CB and RS-MNL, that operate in the batched and rarely-switching paradigms, respectively. The batched setting involves choosing the $M$ policy update rounds at the start of the algorithm, while the rarely-switching setting can choose these $M$ policy update rounds in an adaptive fashion. Our first algorithm, B-MNL-CB extends the notion of distributional optimal designs to the multinomial setting and achieves $\tilde{O}(\sqrt{T})$ regret assuming the contexts are generated stochastically when presented with $\Omega(\log \log T)$ update rounds. Our second algorithm, RS-MNL works with adversarially generated contexts and can achieve $\tilde{O}(\sqrt{T})$ regret with $\tilde{O}(\log T)$ policy updates. Further, we conducted experiments that demonstrate that our algorithms (with a fixed number of policy updates) are extremely competitive (and often better) than several state-of-the-art baselines (which update their policy every round), showcasing the applicability of our algorithms in various practical scenarios.
- Abstract(参考訳): 多項ロジスティックバンドは、最近、複数の結果の問題をモデル化する能力により、多くの注目を集めている。
この設定では、各決定は、多項ロジット関数を用いてモデル化された、多くの可能な結果と関連付けられている。
多重項ロジスティックバンドキットに関する最近のいくつかの研究は、同時に最適な後悔と計算効率を達成した。
しかし、現実の課題と実践性によって動機付けられ、適応性に制限のあるアルゴリズムを開発する必要がある。
これらの課題に対処するために, B-MNL-CB と RS-MNL の2つのアルゴリズムを提案する。
バッチ設定ではアルゴリズムの開始時に$M$ポリシー更新ラウンドを選択するが、めったに切り替えない設定では、適応的な方法で$M$ポリシー更新ラウンドを選択することができる。
我々の最初のアルゴリズムであるB-MNL-CBは、分布最適設計の概念を多重項設定に拡張し、$\tilde{O}(\sqrt{T})$ regretを達成し、$\Omega(\log \log T)$ update roundsで提示された場合、コンテキストが確率的に生成されることを仮定する。
第2のアルゴリズムであるRS-MNLは、逆向きに生成されたコンテキストで動作し、$\tilde{O}(\sqrt{T})$ regretを$\tilde{O}(\log T)$ policy updateで達成できる。
さらに、我々のアルゴリズム(一定の数のポリシー更新を含む)は、いくつかの最先端のベースライン(各ラウンドでポリシーを更新する)よりも非常に競争力があり、様々なシナリオにおいて我々のアルゴリズムの適用性を示す実験を行った。
関連論文リスト
- Efficient Algorithms for Logistic Contextual Slate Bandits with Bandit Feedback [0.8287206589886881]
本稿では,ロジスティック・コンテクスト・スレート・バンド問題について考察する。
選択したスレートに対して、ロジスティックモデルにより決定された単一のバイナリ報酬が観測される。
本稿では,Slate-GLM-OFUとSlate-GLM-TSの2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-06-16T07:19:02Z) - Generalized Linear Bandits with Limited Adaptivity [12.112051468737596]
限定適応性の制約内における一般化線形文脈帯域問題について検討する。
我々は2つのアルゴリズム, $textttB-GLinCB$ と $textttRS-GLinCB$ を提示した。
論文 参考訳(メタデータ) (2024-04-10T08:47:57Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
我々は,選択した$n$のアームセットのジョイント報酬以外の余分な情報が観測されない場合に,マルチアームのバンディット問題に対する新規グリーディ・バンディット(SGB)アルゴリズムを提案する。
SGBは最適化された拡張型コミットアプローチを採用しており、ベースアームの大きなセットを持つシナリオ用に特別に設計されている。
論文 参考訳(メタデータ) (2023-12-13T11:08:25Z) - Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space [0.0]
離散時間可算状態空間マルコフ決定過程の族を最適に制御する問題について検討する。
動的サイズのエピソードを用いたトンプソンサンプリングに基づくアルゴリズムを提案する。
提案アルゴリズムは, 近似最適制御アルゴリズムの開発に応用可能であることを示す。
論文 参考訳(メタデータ) (2023-06-05T03:57:16Z) - Contextual Combinatorial Bandits with Probabilistically Triggered Arms [55.9237004478033]
確率的に誘発される腕(C$2$MAB-T)を様々な滑らかさ条件下で検討した。
トリガー変調 (TPM) 条件の下では、C$2$-UC-Tアルゴリズムを考案し、後悔すべき$tildeO(dsqrtT)$を導出する。
論文 参考訳(メタデータ) (2023-03-30T02:51:00Z) - Near-Optimal Regret Bounds for Multi-batch Reinforcement Learning [54.806166861456035]
本研究では,有限水平マルコフ決定過程(MDP)によってモデル化されたエピソディック強化学習(RL)問題をバッチ数に制約を加えて検討する。
我々は,$tildeO(sqrtSAH3Kln (1/delta))$tildeO(cdot)をほぼ最適に後悔するアルゴリズムを設計し,$(S,A,H,K)$の対数項を$K$で隠蔽する。
技術的貢献は2つある: 1) 探索のためのほぼ最適設計スキーム
論文 参考訳(メタデータ) (2022-10-15T09:22:22Z) - Reward-Mixing MDPs with a Few Latent Contexts are Learnable [75.17357040707347]
報酬混合マルコフ決定過程(RMMDP)におけるエピソード強化学習の検討
我々のゴールは、そのようなモデルにおける時間段階の累積報酬をほぼ最大化する、ほぼ最適に近いポリシーを学ぶことである。
論文 参考訳(メタデータ) (2022-10-05T22:52:00Z) - An Asymptotically Optimal Batched Algorithm for the Dueling Bandit
Problem [13.69077222007053]
従来のマルチアームバンディット問題(英語版)のバリエーションである$K$のデュエルリングバンディット問題(英語版)について検討し、フィードバックをペア比較の形で得られる。
我々は、$O(K2log(K)) + O(Klog(T))$ in $O(log(T))$ rounds を後悔する。
実世界の様々なデータセットに対する計算実験において、$O(log(T))$ラウンドを用いたアルゴリズムが完全に同じ性能を達成することが観察された。
論文 参考訳(メタデータ) (2022-09-25T00:23:55Z) - Policy Optimization for Markov Games: Unified Framework and Faster
Convergence [81.3266426402464]
このアルゴリズムのステートワイド平均ポリシはゲームの近似ナッシュ平衡(NE)に収束することを示す。
このアルゴリズムをマルチプレイヤー一般のMarkov Gamesに拡張し、CCE(Correlated Equilibria)への$mathcalwidetildeO(T-1/2)$収束率を示す。
論文 参考訳(メタデータ) (2022-06-06T14:23:13Z) - Online Sub-Sampling for Reinforcement Learning with General Function
Approximation [111.01990889581243]
本稿では,RLアルゴリズムによって収集されたデータポイントの情報取得量を測定する,効率的なオンラインサブサンプリングフレームワークを確立する。
複雑性バウンド関数クラスを持つ値ベースのメソッドの場合、$proptooperatornamepolylog(K)$ timesに対してのみポリシーを更新する必要がある。
少なくとも$Omega(K)$倍のポリシーを更新する既存のアプローチとは対照的に、当社のアプローチはポリシーの解決における最適化コールの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-06-14T07:36:25Z) - Multinomial Logit Contextual Bandits: Provable Optimality and
Practicality [15.533842336139063]
パラメータが不明な多項式ロギット(MNL)選択モデルによってユーザ選択が与えられる順序選択選択問題を検討する。
本稿では,このMNLコンテクストバンディットに対する高信頼境界に基づくアルゴリズムを提案する。
本稿では,アルゴリズムの単純な変種が,幅広い重要なアプリケーションに対して最適な後悔を与えることを示す。
論文 参考訳(メタデータ) (2021-03-25T15:42:25Z) - Fully Gap-Dependent Bounds for Multinomial Logit Bandit [5.132017939561661]
マルチノミアルロジット (MNL) バンディット問題について検討し、各ステップごとに、販売者は、N$アイテムのプールから最大でK$のサイズを提供する。
i) $widetildeO(sum_i = 1N Delta_i-2)$ time steps with high probability, (ii) $O(sum_i notin S* KDelta_i)というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-19T17:52:12Z) - An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic
Gradient Descent and Thompson Sampling [83.48992319018147]
プレイヤーが過去の観測結果に基づいて逐次意思決定を行い、累積報酬を最大化する文脈的帯域幅問題を考える。
この問題を解決する自然な方法は、ステップごとの時間とメモリの複雑さを一定に抑えるために、オンライン勾配降下(SGD)を適用することである。
本研究では,オンラインSGDが一般化線形帯域問題に適用可能であることを示す。
過去の情報を活用するためにシングルステップのSGD更新を利用するSGD-TSアルゴリズムは、全時間複雑度で$tildeO(sqrtT)$ regretを達成する。
論文 参考訳(メタデータ) (2020-06-07T01:12:39Z) - Provably Efficient Model-Free Algorithm for MDPs with Peak Constraints [38.2783003051101]
本稿では,有限地平線における全報酬の最大化と,各エポックにおける制約を確率1で満たすため,エージェントがポリシーを選択する,制約付きマルコフ決定プロセス(PCMDP)について考察する。
そこで本研究では,PCMDP問題を制約のない問題に変換するモデルフリーアルゴリズムを提案し,Q-ラーニングに基づくアプローチを適用した。
論文 参考訳(メタデータ) (2020-03-11T23:23:29Z) - Model Selection in Contextual Stochastic Bandit Problems [51.94632035240787]
基本アルゴリズムを選択できるメタアルゴリズムを開発した。
基本アルゴリズムの1つが$O(sqrtT)$後悔している場合でも、一般的には$Omega(sqrtT)$後悔よりも良いものを得ることはできません。
論文 参考訳(メタデータ) (2020-03-03T18:46:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。