Exploring Fairness across Fine-Grained Attributes in Large Vision-Language Models
- URL: http://arxiv.org/abs/2508.03079v1
- Date: Tue, 05 Aug 2025 04:52:32 GMT
- Title: Exploring Fairness across Fine-Grained Attributes in Large Vision-Language Models
- Authors: Zaiying Zhao, Toshihiko Yamasaki,
- Abstract summary: We construct an open-set knowledge base of bias attributes leveraging Large Language Models (LLMs) and evaluate the fairness of LVLMs across finer-grained attributes.<n>Our experimental results reveal that LVLMs exhibit biased outputs across a diverse set of attributes and further demonstrate that cultural, environmental, and behavioral factors have a more pronounced impact on LVLM decision-making than traditional demographic attributes.
- Score: 26.186038156155522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid expansion of applications using Large Vision-Language Models (LVLMs), such as GPT-4o, has raised significant concerns about their fairness. While existing studies primarily focus on demographic attributes such as race and gender, fairness across a broader range of attributes remains largely unexplored. In this study, we construct an open-set knowledge base of bias attributes leveraging Large Language Models (LLMs) and evaluate the fairness of LVLMs across finer-grained attributes. Our experimental results reveal that LVLMs exhibit biased outputs across a diverse set of attributes and further demonstrate that cultural, environmental, and behavioral factors have a more pronounced impact on LVLM decision-making than traditional demographic attributes.
Related papers
- MLLMs are Deeply Affected by Modality Bias [158.64371871084478]
Recent advances in Multimodal Large Language Models (MLLMs) have shown promising results in integrating diverse modalities such as texts and images.<n>MLLMs are heavily influenced by modality bias, often relying on language while under-utilizing other modalities like visual inputs.<n>This paper argues that MLLMs are deeply affected by modality bias, highlighting its manifestations across various tasks.
arXiv Detail & Related papers (2025-05-24T11:49:31Z) - Benchmarking Large Vision-Language Models on Fine-Grained Image Tasks: A Comprehensive Evaluation [53.84282335629258]
We introduce a comprehensive fine-grained evaluation benchmark, i.e., FG-BMK, comprising 1.01 million questions and 0.33 million images.<n>Our evaluation systematically examines LVLMs from both human-oriented and machine-oriented perspectives.<n>We uncover key findings regarding the influence of training paradigms, modality alignment, perturbation susceptibility, and fine-grained category reasoning on task performance.
arXiv Detail & Related papers (2025-04-21T09:30:41Z) - The Other Side of the Coin: Exploring Fairness in Retrieval-Augmented Generation [73.16564415490113]
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by retrieving relevant document from external knowledge sources.<n>We propose two approaches, FairFT and FairFilter, to mitigate the fairness issues introduced by RAG for small-scale LLMs.
arXiv Detail & Related papers (2025-04-11T10:17:10Z) - Metamorphic Testing for Fairness Evaluation in Large Language Models: Identifying Intersectional Bias in LLaMA and GPT [2.380039717474099]
Large Language Models (LLMs) have made significant strides in Natural Language Processing but remain vulnerable to fairness-related issues.<n>This paper introduces a metamorphic testing approach to systematically identify fairness bugs in LLMs.
arXiv Detail & Related papers (2025-04-04T21:04:14Z) - Fairness in Large Language Models in Three Hours [2.443957114877221]
This tutorial provides a systematic overview of recent advances in the literature concerning large language models.
The concept of fairness in LLMs is then explored, summarizing the strategies for evaluating bias and the algorithms designed to promote fairness.
arXiv Detail & Related papers (2024-08-02T03:44:14Z) - Evaluating Fairness in Large Vision-Language Models Across Diverse Demographic Attributes and Prompts [27.66626125248612]
We empirically investigate visual fairness in several mainstream large vision-language models (LVLMs)
Our fairness evaluation framework employs direct and single-choice question prompt on visual question-answering/classification tasks.
We propose a potential multi-modal Chain-of-thought (CoT) based strategy for bias mitigation, applicable to both open-source and closed-source LVLMs.
arXiv Detail & Related papers (2024-06-25T23:11:39Z) - Leveraging vision-language models for fair facial attribute classification [19.93324644519412]
General-purpose vision-language model (VLM) is a rich knowledge source for common sensitive attributes.
We analyze the correspondence between VLM predicted and human defined sensitive attribute distribution.
Experiments on multiple benchmark facial attribute classification datasets show fairness gains of the model over existing unsupervised baselines.
arXiv Detail & Related papers (2024-03-15T18:37:15Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
We investigate whether fine-tuning affects the intrinsic generalization ability intrinsic to Large Language Models (LLMs)
Our main findings reveal that models fine-tuned on generation and classification tasks exhibit dissimilar behaviors in generalizing to different domains and tasks.
We observe that integrating the in-context learning strategy during fine-tuning on generation tasks can enhance the model's generalization ability.
arXiv Detail & Related papers (2024-03-14T08:18:59Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z) - A Theory of Response Sampling in LLMs: Part Descriptive and Part Prescriptive [53.08398658452411]
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making.<n>We show that this sampling behavior resembles that of human decision-making.<n>We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains.
arXiv Detail & Related papers (2024-02-16T18:28:43Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.