論文の概要: MissDDIM: Deterministic and Efficient Conditional Diffusion for Tabular Data Imputation
- arxiv url: http://arxiv.org/abs/2508.03083v1
- Date: Tue, 05 Aug 2025 04:55:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.784906
- Title: MissDDIM: Deterministic and Efficient Conditional Diffusion for Tabular Data Imputation
- Title(参考訳): MissDDIM: 単語データインプットのための決定論的かつ効率的な条件拡散
- Authors: Youran Zhou, Mohamed Reda Bouadjenek, Sunil Aryal,
- Abstract要約: 表計算にDenoising Diffusion Implicit Models(DDIM)を適用する条件拡散フレームワークMissDDIMを提案する。
サンプリングは多様な補完を可能にするが、下流処理を複雑にする出力の可変性も導入している。
- 参考スコア(独自算出の注目度): 2.124791625488617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have recently emerged as powerful tools for missing data imputation by modeling the joint distribution of observed and unobserved variables. However, existing methods, typically based on stochastic denoising diffusion probabilistic models (DDPMs), suffer from high inference latency and variable outputs, limiting their applicability in real-world tabular settings. To address these deficiencies, we present in this paper MissDDIM, a conditional diffusion framework that adapts Denoising Diffusion Implicit Models (DDIM) for tabular imputation. While stochastic sampling enables diverse completions, it also introduces output variability that complicates downstream processing.
- Abstract(参考訳): 拡散モデルは、観測された変数と観測されていない変数の合同分布をモデル化することによって、データ計算を欠く強力なツールとして最近登場した。
しかし、既存の手法は一般に拡散確率モデル(DDPM)に基づいており、推論遅延と可変出力に悩まされており、実際の表の設定で適用性が制限されている。
これらの欠陥に対処するため,本論文では,表計算にDenoising Diffusion Implicit Models(DDIM)を適用する条件拡散フレームワークであるMissDDIMについて述べる。
確率的サンプリングは多様な補完を可能にするが、下流処理を複雑にする出力変数も導入する。
関連論文リスト
- Non-stationary Diffusion For Probabilistic Time Series Forecasting [3.7687375904925484]
非定常拡散(NsDiff)と呼ばれる拡散に基づく確率的予測フレームワークを開発する。
NsDiffは、デノナイズド拡散に基づく条件生成モデルと、事前訓練された条件平均と分散推定器を組み合わせる。
9つの実世界および合成データセットで実施された実験は、既存のアプローチと比較して、NsDiffの優れた性能を示している。
論文 参考訳(メタデータ) (2025-05-07T09:29:39Z) - Simple and Critical Iterative Denoising: A Recasting of Discrete Diffusion in Graph Generation [0.0]
中間ノイズ状態間の依存関係は、逆ノイズ化プロセス中にエラーの蓄積と伝播を引き起こす。
本稿では, 離散拡散を単純化し, 問題を回避し, 簡易反復分解という新しい枠組みを提案する。
実験により,提案手法はグラフ生成タスクにおいて既存の離散拡散ベースラインを著しく上回ることを示す。
論文 参考訳(メタデータ) (2025-03-27T15:08:58Z) - Interleaved Gibbs Diffusion: Generating Discrete-Continuous Data with Implicit Constraints [30.624303845550575]
Interleaved Gibbs Diffusion (IGD)は、離散連続データのための新しい生成モデリングフレームワークである。
IGDは離散時間ギブスサンプリング型マルコフ連鎖を離散連続生成の場合に一般化する。
ドメイン固有の帰納バイアスに頼ることなく、最先端の結果を達成する。
論文 参考訳(メタデータ) (2025-02-19T05:51:24Z) - Generalized Diffusion Model with Adjusted Offset Noise [1.7767466724342067]
本稿では,厳密な確率的枠組みの中で自然に付加的な雑音を取り入れた一般化拡散モデルを提案する。
我々は、ある調整でノイズを相殺する理論的等価性を確立し、証拠の低い境界に基づいて損失関数を導出する。
合成データセットの実験により、我々のモデルは輝度に関する課題に効果的に対処し、高次元シナリオにおいて従来の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-12-04T08:57:03Z) - Self-Supervision Improves Diffusion Models for Tabular Data Imputation [20.871219616589986]
本稿では,自己教師型計算拡散モデル (SimpDM for brevity) という高度な拡散モデルを提案する。
ノイズに対する感度を緩和するために、モデルを規則化し、一貫した安定な計算予測を保証する自己教師付きアライメント機構を導入する。
我々はまた、SimpDM内で慎重に設計された状態依存データ拡張戦略を導入し、限られたデータを扱う際の拡散モデルの堅牢性を高める。
論文 参考訳(メタデータ) (2024-07-25T13:06:30Z) - Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data [55.54827581105283]
本研究では, 吸収拡散の具体的なスコアを, クリーンデータの条件付き確率として表すことができることを示す。
時間に依存しない条件付き確率を特徴付ける時間条件のない専用拡散モデルを提案する。
5つのゼロショット言語モデルベンチマークにおける拡散モデル間のSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T04:22:11Z) - DiffPuter: Empowering Diffusion Models for Missing Data Imputation [56.48119008663155]
本稿ではDiffPuterについて紹介する。DiffPuterは、データ計算の欠如に対する期待最大化(EM)アルゴリズムと組み合わせた、カスタマイズされた拡散モデルである。
我々の理論的解析は、DiffPuterのトレーニングステップがデータ密度の最大推定値に対応することを示している。
DiffPuterは,最も競争力のある既存手法と比較して,MAEが6.94%,RMSEが4.78%向上した。
論文 参考訳(メタデータ) (2024-05-31T08:35:56Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - MissDiff: Training Diffusion Models on Tabular Data with Missing Values [29.894691645801597]
この研究は、欠落した値を持つデータから学習するための統一的で原則化された拡散ベースのフレームワークを示す。
まず、広く採用されている「インプット・ザ・ジェネレーション」パイプラインが、バイアスのある学習目標に繋がる可能性があることを観察する。
提案手法は,データ分布のスコアの学習に一貫性があることを証明し,提案手法は特定の場合において負の確率の上限として機能する。
論文 参考訳(メタデータ) (2023-07-02T03:49:47Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - DisDiff: Unsupervised Disentanglement of Diffusion Probabilistic Models [42.58375679841317]
拡散確率モデル(DPM)の解離という新たな課題を提案する。
この課題は、観測の背後にある固有の因子を自動的に発見し、DPMの勾配場を下位段階の磁場に分解することである。
そこで我々は,DPMの枠組みにおいて,不整合表現学習を実現するために,DisDiffという教師なしのアプローチを考案した。
論文 参考訳(メタデータ) (2023-01-31T15:58:32Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Discrete Denoising Flows [87.44537620217673]
分類的確率変数に対する離散的フローベースモデル(DDF)を提案する。
他の離散フローベースモデルとは対照的に、我々のモデルは勾配バイアスを導入することなく局所的に訓練することができる。
そこで本研究では, DDFs が離散フローより優れていることを示し, 対数類似度で測定した2値MNIST と Cityscapes のセグメンテーションマップをモデル化した。
論文 参考訳(メタデータ) (2021-07-24T14:47:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。