HiTeC: Hierarchical Contrastive Learning on Text-Attributed Hypergraph with Semantic-Aware Augmentation
- URL: http://arxiv.org/abs/2508.03104v1
- Date: Tue, 05 Aug 2025 05:32:32 GMT
- Title: HiTeC: Hierarchical Contrastive Learning on Text-Attributed Hypergraph with Semantic-Aware Augmentation
- Authors: Mengting Pan, Fan Li, Xiaoyang Wang, Wenjie Zhang, Xuemin Lin,
- Abstract summary: We introduce HiTeC, a two-stage hierarchical contrastive learning framework with semantic-aware augmentation for scalable and effective self-supervised learning on text-attributed hypergraphs.<n>In the first stage, we pre-train the text encoder with a structure-aware contrastive objective to overcome the graph-agnostic nature of conventional methods.<n>In the second stage, we introduce two semantic-aware augmentation strategies, including prompt-enhanced text augmentation and semantic-aware hyperedge drop, to facilitate informative view generation.
- Score: 26.79020814067813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning (CL) has become a dominant paradigm for self-supervised hypergraph learning, enabling effective training without costly labels. However, node entities in real-world hypergraphs are often associated with rich textual information, which is overlooked in prior works. Directly applying existing CL-based methods to such text-attributed hypergraphs (TAHGs) leads to three key limitations: (1) The common use of graph-agnostic text encoders overlooks the correlations between textual content and hypergraph topology, resulting in suboptimal representations. (2) Their reliance on random data augmentations introduces noise and weakens the contrastive objective. (3) The primary focus on node- and hyperedge-level contrastive signals limits the ability to capture long-range dependencies, which is essential for expressive representation learning. Although HyperBERT pioneers CL on TAHGs, its co-training paradigm suffers from poor scalability. To fill the research gap, we introduce HiTeC, a two-stage hierarchical contrastive learning framework with semantic-aware augmentation for scalable and effective self-supervised learning on TAHGs. In the first stage, we pre-train the text encoder with a structure-aware contrastive objective to overcome the graph-agnostic nature of conventional methods. In the second stage, we introduce two semantic-aware augmentation strategies, including prompt-enhanced text augmentation and semantic-aware hyperedge drop, to facilitate informative view generation. Furthermore, we propose a multi-scale contrastive loss that extends existing objectives with an $s$-walk-based subgraph-level contrast to better capture long-range dependencies. By decoupling text encoder pretraining from hypergraph contrastive learning, this two-stage design enhances scalability without compromising representation quality. Extensive experiments confirm the effectiveness of HiTeC.
Related papers
- Hierarchical Cross-modal Prompt Learning for Vision-Language Models [9.128564580725627]
HiCroPL is a Hierarchical Cross-modal Prompt Learning framework.<n>It routes knowledge flows by leveraging the complementary strengths of text and vision.<n>It achieves state-of-the-art results on 11 benchmarks with significant improvements.
arXiv Detail & Related papers (2025-07-20T14:18:04Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning [0.0]
Graph representation learning has emerged as a cornerstone for tasks like node classification and link prediction.<n>Current self-supervised learning (SSL) methods face challenges such as computational inefficiency, reliance on contrastive objectives, and representation collapse.<n>We propose a novel joint embedding predictive framework for graph SSL that eliminates contrastive objectives and negative sampling while preserving semantic and structural information.
arXiv Detail & Related papers (2025-02-02T07:42:45Z) - Can Graph Neural Networks Learn Language with Extremely Weak Text Supervision? [62.12375949429938]
We propose a multi-modal prompt learning paradigm to adapt pre-trained Graph Neural Networks to downstream tasks and data.<n>Our new paradigm embeds the graphs directly in the same space as the Large Language Models (LLMs) by learning both graph prompts and text prompts simultaneously.<n>We build the first CLIP-style zero-shot classification prototype that can generalize GNNs to unseen classes with extremely weak text supervision.
arXiv Detail & Related papers (2024-12-11T08:03:35Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive deep graph clustering (CDGC) leverages the power of contrastive learning to group nodes into different clusters.
We propose a Graph Node Clustering with Fully Learnable Augmentation, termed GraphLearner.
It introduces learnable augmentors to generate high-quality and task-specific augmented samples for CDGC.
arXiv Detail & Related papers (2022-12-07T10:19:39Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
We apply the contrastive learning approach from images/graphs (we refer to it as HyperGCL) to improve generalizability of hypergraph neural networks.
We fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three augmentation strategies from graph-structured data.
We propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters.
arXiv Detail & Related papers (2022-10-07T20:12:20Z) - Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased
Scene Graph Generation [62.96628432641806]
Scene Graph Generation aims to first encode the visual contents within the given image and then parse them into a compact summary graph.
We first present a novel Stacked Hybrid-Attention network, which facilitates the intra-modal refinement as well as the inter-modal interaction.
We then devise an innovative Group Collaborative Learning strategy to optimize the decoder.
arXiv Detail & Related papers (2022-03-18T09:14:13Z) - Hypergraph Pre-training with Graph Neural Networks [30.768860573214102]
This paper presents an end-to-end, bi-level pre-training strategy with Graph Neural Networks for hypergraphs.
The proposed framework named HyperGene bears three distinctive advantages.
It is capable of ingesting the labeling information when available, but more importantly, it is mainly designed in the self-supervised fashion which significantly broadens its applicability.
arXiv Detail & Related papers (2021-05-23T06:33:57Z) - Structure-Augmented Text Representation Learning for Efficient Knowledge
Graph Completion [53.31911669146451]
Human-curated knowledge graphs provide critical supportive information to various natural language processing tasks.
These graphs are usually incomplete, urging auto-completion of them.
graph embedding approaches, e.g., TransE, learn structured knowledge via representing graph elements into dense embeddings.
textual encoding approaches, e.g., KG-BERT, resort to graph triple's text and triple-level contextualized representations.
arXiv Detail & Related papers (2020-04-30T13:50:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.