SARD: Segmentation-Aware Anomaly Synthesis via Region-Constrained Diffusion with Discriminative Mask Guidance
- URL: http://arxiv.org/abs/2508.03143v1
- Date: Tue, 05 Aug 2025 06:43:01 GMT
- Title: SARD: Segmentation-Aware Anomaly Synthesis via Region-Constrained Diffusion with Discriminative Mask Guidance
- Authors: Yanshu Wang, Xichen Xu, Xiaoning Lei, Guoyang Xie,
- Abstract summary: We propose SARD (Segmentation-Aware anomaly synthesis via Region-constrained Diffusion with discriminative mask Guidance), a novel diffusion-based framework specifically designed for anomaly generation.<n>SARD surpasses existing methods in segmentation accuracy and visual quality, setting a new state-of-the-art for pixel-level anomaly synthesis.
- Score: 4.65786322515141
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Synthesizing realistic and spatially precise anomalies is essential for enhancing the robustness of industrial anomaly detection systems. While recent diffusion-based methods have demonstrated strong capabilities in modeling complex defect patterns, they often struggle with spatial controllability and fail to maintain fine-grained regional fidelity. To overcome these limitations, we propose SARD (Segmentation-Aware anomaly synthesis via Region-constrained Diffusion with discriminative mask Guidance), a novel diffusion-based framework specifically designed for anomaly generation. Our approach introduces a Region-Constrained Diffusion (RCD) process that preserves the background by freezing it and selectively updating only the foreground anomaly regions during the reverse denoising phase, thereby effectively reducing background artifacts. Additionally, we incorporate a Discriminative Mask Guidance (DMG) module into the discriminator, enabling joint evaluation of both global realism and local anomaly fidelity, guided by pixel-level masks. Extensive experiments on the MVTec-AD and BTAD datasets show that SARD surpasses existing methods in segmentation accuracy and visual quality, setting a new state-of-the-art for pixel-level anomaly synthesis.
Related papers
- Quality-Aware Language-Conditioned Local Auto-Regressive Anomaly Synthesis and Detection [30.77558600436759]
ARAS is a language-conditioned, auto-regressive anomaly synthesis approach.<n>It injects local, text-specified defects into normal images via token-anchored latent editing.<n>It significantly enhances defect realism, preserves fine-grained material textures, and provides continuous semantic control over synthesized anomalies.
arXiv Detail & Related papers (2025-08-05T15:07:32Z) - Generate Aligned Anomaly: Region-Guided Few-Shot Anomaly Image-Mask Pair Synthesis for Industrial Inspection [53.137651284042434]
Anomaly inspection plays a vital role in industrial manufacturing, but the scarcity of anomaly samples limits the effectiveness of existing methods.<n>We propose Generate grained Anomaly (GAA), a region-guided, few-shot anomaly image-mask pair generation framework.<n>GAA generates realistic, diverse, and semantically aligned anomalies using only a small number of samples.
arXiv Detail & Related papers (2025-07-13T12:56:59Z) - MAGIC: Mask-Guided Diffusion Inpainting with Multi-Level Perturbations and Context-Aware Alignment for Few-Shot Anomaly Generation [4.773905705768453]
Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings.<n>We propose MAGIC-Mask-guided inpainting with multi-level perturbations and Context-aware alignment.<n> MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.
arXiv Detail & Related papers (2025-07-03T04:54:37Z) - Frequency Domain-Based Diffusion Model for Unpaired Image Dehazing [92.61216319417208]
We propose a novel frequency domain-based diffusion model, named ours, for fully exploiting the beneficial knowledge in unpaired clear data.<n>Inspired by the strong generative ability shown by Diffusion Models (DMs), we tackle the dehazing task from the perspective of frequency domain reconstruction.
arXiv Detail & Related papers (2025-07-02T01:22:46Z) - CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types, and the scarcity of training data.<n>We propose CLIPfusion, a method that leverages both discriminative and generative foundation models.<n>We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection.
arXiv Detail & Related papers (2025-06-13T13:30:15Z) - Correcting Deviations from Normality: A Reformulated Diffusion Model for Multi-Class Unsupervised Anomaly Detection [15.572896213775438]
This paper introduces a reformulation of the standard diffusion model geared toward selective region alteration.<n>By modeling anomalies as noise in the latent space, our proposed textbfDeviation correction diffusion (Ours) model preserves the normal regions and encourages transformations on anomalous areas.<n> Comprehensive evaluations demonstrate the superiority of our method in accurately identifying and localizing anomalies in complex images.
arXiv Detail & Related papers (2025-03-25T05:14:40Z) - Unsupervised Region-Based Image Editing of Denoising Diffusion Models [50.005612464340246]
We propose a method to identify semantic attributes in the latent space of pre-trained diffusion models without any further training.<n>Our approach facilitates precise semantic discovery and control over local masked areas, eliminating the need for annotations.
arXiv Detail & Related papers (2024-12-17T13:46:12Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection [80.20339155618612]
DiffusionAD is a novel anomaly detection pipeline comprising a reconstruction sub-network and a segmentation sub-network.<n>A rapid one-step denoising paradigm achieves hundreds of times acceleration while preserving comparable reconstruction quality.<n>Considering the diversity in the manifestation of anomalies, we propose a norm-guided paradigm to integrate the benefits of multiple noise scales.
arXiv Detail & Related papers (2023-03-15T16:14:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.