論文の概要: Quantum Spectral Reasoning: A Non-Neural Architecture for Interpretable Machine Learning
- arxiv url: http://arxiv.org/abs/2508.03170v1
- Date: Tue, 05 Aug 2025 07:16:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.837225
- Title: Quantum Spectral Reasoning: A Non-Neural Architecture for Interpretable Machine Learning
- Title(参考訳): 量子スペクトル推論 - 解釈可能な機械学習のための非ニューラルアーキテクチャ
- Authors: Andrew Kiruluta,
- Abstract要約: 本稿では,従来のニューラルネットワークのパラダイムから外れた,新しい機械学習アーキテクチャを提案する。
我々は、量子スペクトル法、特にPade近似法とLanczosアルゴリズムを用いて、解釈可能な信号解析とシンボリック推論を行う。
その結果,このスペクトル記号型アーキテクチャは,解釈可能性とデータ効率を保ちながら,競合精度を達成できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel machine learning architecture that departs from conventional neural network paradigms by leveraging quantum spectral methods, specifically Pade approximants and the Lanczos algorithm, for interpretable signal analysis and symbolic reasoning. The core innovation of our approach lies in its ability to transform raw time-domain signals into sparse, physically meaningful spectral representations without the use of backpropagation, high-dimensional embeddings, or data-intensive black-box models. Through rational spectral approximation, the system extracts resonant structures that are then mapped into symbolic predicates via a kernel projection function, enabling logical inference through a rule-based reasoning engine. This architecture bridges mathematical physics, sparse approximation theory, and symbolic artificial intelligence, offering a transparent and physically grounded alternative to deep learning models. We develop the full mathematical formalism underlying each stage of the pipeline, provide a modular algorithmic implementation, and demonstrate the system's effectiveness through comparative evaluations on time-series anomaly detection, symbolic classification, and hybrid reasoning tasks. Our results show that this spectral-symbolic architecture achieves competitive accuracy while maintaining interpretability and data efficiency, suggesting a promising new direction for physically-informed, reasoning-capable machine learning.
- Abstract(参考訳): 本稿では,量子スペクトル法,特にPade近似法とLanczosアルゴリズムを応用して,従来のニューラルネットワークのパラダイムから外れた新しい機械学習アーキテクチャを提案する。
このアプローチの中核的な革新は、バックプロパゲーション、高次元埋め込み、データ集約型ブラックボックスモデルを用いることなしに、生の時間領域信号を疎結合で物理的に意味のあるスペクトル表現に変換する能力にある。
有理スペクトル近似により、システムは共振構造を抽出し、カーネル投影関数を介してシンボリック述語にマッピングし、規則ベースの推論エンジンによる論理推論を可能にする。
このアーキテクチャは、数学物理学、スパース近似理論、象徴的人工知能を橋渡しし、深層学習モデルに代わる透明で物理的に基礎付けられた代替手段を提供する。
本研究は,パイプラインの各段階を基礎とした完全な数学的フォーマリズムを開発し,モジュール型アルゴリズムの実装を提供し,時系列異常検出,記号分類,ハイブリッド推論タスクの比較評価を通じて,システムの有効性を実証する。
このスペクトルシンボリックアーキテクチャは、解釈可能性とデータ効率を保ちながら、競合する精度を達成し、物理的にインフォームドされた推論可能な機械学習に期待できる新たな方向性を示唆している。
関連論文リスト
- Symbolic Neural Ordinary Differential Equations [11.69943926220929]
記号型ニューラル正規微分方程式(SNODE)と呼ばれる記号型連続深度ニューラルネットワークの新しい学習フレームワークを提案する。
我々の枠組みは、システム分岐制御、再構築と予測、新しい方程式の発見など、幅広い科学的問題にさらに適用することができる。
論文 参考訳(メタデータ) (2025-03-11T05:38:22Z) - Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks [11.906779308433723]
学習の背後にあるメカニズムを解析するための解釈可能な微調整法を開発した。
まず,計算グラフにおけるモデルの学習過程を記述するために,ノードレベルの固有次元の概念を導入する。
提案手法では,各タスクの最小部分グラフを反復的に構築する2段階アルゴリズムであるサーキットチューニングを提案する。
論文 参考訳(メタデータ) (2025-02-10T02:35:53Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Neural Harmonium: An Interpretable Deep Structure for Nonlinear Dynamic
System Identification with Application to Audio Processing [4.599180419117645]
解釈可能性(Interpretability)は、モデルを一般化し、その限界を明らかにする能力を理解するのに役立ちます。
本稿では,動的システムモデリングのための因果解釈可能な深部構造を提案する。
提案モデルは,時間周波数領域におけるシステムモデリングによる調和解析を利用する。
論文 参考訳(メタデータ) (2023-10-10T21:32:15Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
本稿では, スペクトル分解表現法(SPEDER)を提案する。この手法は, データ収集ポリシーに急激な依存を生じさせることなく, ダイナミックスから状態-作用の抽象化を抽出する。
理論的解析により、オンライン設定とオフライン設定の両方において提案アルゴリズムのサンプル効率が確立される。
実験により、いくつかのベンチマークで現在の最先端アルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-08-19T19:01:30Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
科学と工学において、モデリング(英: modeling)とは、内部プロセスが不透明な複雑なシステムを理解するために用いられる方法論である。
本稿では,ガウス過程を用いたニューラルネットワークの代理モデルのクラスを構築する。
提案手法は,ニューラルネットワークのスペクトルバイアスに関連する既存の現象を捕捉し,サロゲートモデルを用いて現実的な問題を解決することを実証する。
論文 参考訳(メタデータ) (2022-08-11T20:17:02Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Data Assimilation Networks [1.5545257664210517]
データ同化は、システムの数学的表現とノイズの観測を組み合わせることで、力学系の状態を予測することを目的としている。
本稿では,再帰的エルマンネットワークとデータ同化アルゴリズムを一般化した完全データ駆動型ディープラーニングアーキテクチャを提案する。
本アーキテクチャは, 明示的な正規化手法を使わずに, システム状態の確率密度関数の解析と伝播の両面において, EnKF に匹敵する性能を達成している。
論文 参考訳(メタデータ) (2020-10-19T17:35:36Z) - Equivalence in Deep Neural Networks via Conjugate Matrix Ensembles [0.0]
ディープラーニングアーキテクチャの等価性を検出するための数値解析手法を開発した。
経験的証拠は、ニューラルアーキテクチャのスペクトル密度とそれに対応する共役円形アンサンブルの差が消えているという現象を裏付けている。
論文 参考訳(メタデータ) (2020-06-14T12:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。