論文の概要: Symbolic Neural Ordinary Differential Equations
- arxiv url: http://arxiv.org/abs/2503.08059v1
- Date: Tue, 11 Mar 2025 05:38:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 15:41:38.605186
- Title: Symbolic Neural Ordinary Differential Equations
- Title(参考訳): 記号型ニューラル正規微分方程式
- Authors: Xin Li, Chengli Zhao, Xue Zhang, Xiaojun Duan,
- Abstract要約: 記号型ニューラル正規微分方程式(SNODE)と呼ばれる記号型連続深度ニューラルネットワークの新しい学習フレームワークを提案する。
我々の枠組みは、システム分岐制御、再構築と予測、新しい方程式の発見など、幅広い科学的問題にさらに適用することができる。
- 参考スコア(独自算出の注目度): 11.69943926220929
- License:
- Abstract: Differential equations are widely used to describe complex dynamical systems with evolving parameters in nature and engineering. Effectively learning a family of maps from the parameter function to the system dynamics is of great significance. In this study, we propose a novel learning framework of symbolic continuous-depth neural networks, termed Symbolic Neural Ordinary Differential Equations (SNODEs), to effectively and accurately learn the underlying dynamics of complex systems. Specifically, our learning framework comprises three stages: initially, pre-training a predefined symbolic neural network via a gradient flow matching strategy; subsequently, fine-tuning this network using Neural ODEs; and finally, constructing a general neural network to capture residuals. In this process, we apply the SNODEs framework to partial differential equation systems through Fourier analysis, achieving resolution-invariant modeling. Moreover, this framework integrates the strengths of symbolism and connectionism, boasting a universal approximation theorem while significantly enhancing interpretability and extrapolation capabilities relative to state-of-the-art baseline methods. We demonstrate this through experiments on several representative complex systems. Therefore, our framework can be further applied to a wide range of scientific problems, such as system bifurcation and control, reconstruction and forecasting, as well as the discovery of new equations.
- Abstract(参考訳): 微分方程式は、自然と工学において進化するパラメータを持つ複雑な力学系を記述するために広く用いられる。
パラメータ関数からシステムダイナミクスへの写像の族を効果的に学習することは、非常に重要である。
本研究では,記号型ニューラル・ニューラル・ディファレンシャル方程式 (SNODE) と呼ばれる,記号型連続深度ニューラルネットワークの新しい学習フレームワークを提案する。
具体的には、まず、勾配フローマッチング戦略を介して事前に定義されたシンボルニューラルネットワークを事前学習し、その後、ニューラルネットワークをニューラルネットワークを用いて微調整し、最後に、残留物をキャプチャするための一般的なニューラルネットワークを構築する。
本稿では,フーリエ解析による偏微分方程式系にSNODEsフレームワークを適用し,分解能不変モデリングを実現する。
さらに、この枠組みはシンボリズムとコネクショナリズムの強みを統合し、普遍近似定理を誇示するとともに、最先端のベースライン法に対する解釈可能性と外挿能力を大幅に向上させる。
いくつかの代表的な複雑系の実験を通してこれを実証する。
したがって,システム分岐制御,再構築と予測,新しい方程式の発見など,幅広い科学的問題に対して,我々の枠組みをさらに適用することができる。
関連論文リスト
- KAN-ODEs: Kolmogorov-Arnold Network Ordinary Differential Equations for Learning Dynamical Systems and Hidden Physics [0.0]
コルモゴロフ・アルノルドネットワーク(KAN)は多層パーセプトロン(MLP)の代替品である
この研究は、Kansをニューラル常微分方程式(ODE)フレームワークのバックボーンとして適用する。
論文 参考訳(メタデータ) (2024-07-05T00:38:49Z) - Learning Governing Equations of Unobserved States in Dynamical Systems [0.0]
我々は、部分的に観測された力学系の制御方程式を学習するために、ハイブリッドニューラルネットワークODE構造を用いる。
本手法は, 観測されていない状態の真の支配方程式の学習に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-29T10:28:14Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - Embedding Capabilities of Neural ODEs [0.0]
動的システム理論を用いたニューラルODEの入出力関係について検討する。
我々は,低次元および高次元の異なるニューラルODEアーキテクチャにおける写像の正確な埋め込みについて,いくつかの結果を証明した。
論文 参考訳(メタデータ) (2023-08-02T15:16:34Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Artificial neural network as a universal model of nonlinear dynamical
systems [0.0]
このマップは、重みがモデル化されたシステムをエンコードする人工知能ニューラルネットワークとして構築されている。
ローレンツ系、ロースラー系およびヒンドマール・ロースニューロンを考察する。
誘引子、パワースペクトル、分岐図、リャプノフ指数の視覚像に高い類似性が観察される。
論文 参考訳(メタデータ) (2021-03-06T16:02:41Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。