論文の概要: Advancing Precision in Multi-Point Cloud Fusion Environments
- arxiv url: http://arxiv.org/abs/2508.03179v1
- Date: Tue, 05 Aug 2025 07:43:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.845136
- Title: Advancing Precision in Multi-Point Cloud Fusion Environments
- Title(参考訳): 多点雲融合環境における高精度化
- Authors: Ulugbek Alibekov, Vanessa Staderini, Philipp Schneider, Doris Antensteiner,
- Abstract要約: 本研究は,多点クラウドと多点クラウドマッチング手法の評価による視覚的産業検査に焦点を当てた。
本稿では,複数の点群をマージし,表面欠陥を可視化し,自動検査システムの精度と効率を向上させるための新しいCloudCompareプラグインを提案する。
- 参考スコア(独自算出の注目度): 1.4824451023656127
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research focuses on visual industrial inspection by evaluating point clouds and multi-point cloud matching methods. We also introduce a synthetic dataset for quantitative evaluation of registration method and various distance metrics for point cloud comparison. Additionally, we present a novel CloudCompare plugin for merging multiple point clouds and visualizing surface defects, enhancing the accuracy and efficiency of automated inspection systems.
- Abstract(参考訳): 本研究は,多点クラウドと多点クラウドマッチング手法の評価による視覚的産業検査に焦点を当てた。
また, ポイントクラウド比較のために, 登録手法の定量的評価のための合成データセットと, 各種距離指標も導入した。
さらに,複数の点群をマージし,表面欠陥を可視化し,自動検査システムの精度と効率を向上させる新しいCloudCompareプラグインを提案する。
関連論文リスト
- Fully-Geometric Cross-Attention for Point Cloud Registration [51.865371511201765]
ポイントクラウド登録のアプローチは、ノイズのあるポイント対応のため、ポイントクラウド間の重なりが低いときに失敗することが多い。
この問題に対処するTransformerベースのアーキテクチャに適した,新たなクロスアテンション機構を導入する。
我々はGromov-Wasserstein距離をクロスアテンションの定式化に統合し、異なる点雲間の点間距離を共同計算する。
点レベルでは,局所的な幾何学的構造情報を細かなマッチングのための点特徴に集約する自己認識機構も考案する。
論文 参考訳(メタデータ) (2025-02-12T10:44:36Z) - Efficient Point Clouds Upsampling via Flow Matching [16.948354780275388]
既存の拡散モデルは、ガウスノイズを実点雲にマップするときに非効率で苦労する。
本研究では,スパース点雲を高忠実度密度の雲に直接マッピングする流れマッチング手法PUFMを提案する。
本手法はより優れたアップサンプリング品質を提供するが,サンプリングステップは少ない。
論文 参考訳(メタデータ) (2025-01-25T17:50:53Z) - ComPC: Completing a 3D Point Cloud with 2D Diffusion Priors [52.72867922938023]
センサーを通して直接オブジェクトから収集される3Dポイント雲は、自己閉塞のため、しばしば不完全である。
トレーニングを必要とせずに、未確認のカテゴリにまたがる部分点雲を完結させるテストタイムフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T08:02:17Z) - Point Cloud Mamba: Point Cloud Learning via State Space Model [73.7454734756626]
我々は,マンバをベースとしたポイントクラウド法が,トランスフォーマや多層パーセプトロン(MLP)に基づく従来手法よりも優れていることを示す。
特に,マルチ層パーセプトロン(MLP)を用いて,マンバをベースとした点雲法が従来手法より優れていることを示す。
Point Cloud Mambaは、最先端(SOTA)のポイントベースメソッドであるPointNeXtを超え、ScanNN、ModelNet40、ShapeNetPart、S3DISデータセット上での新たなSOTAパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-01T18:59:03Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - HybridFusion: LiDAR and Vision Cross-Source Point Cloud Fusion [15.94976936555104]
我々はHybridFusionと呼ばれるクロスソース点雲融合アルゴリズムを提案する。
アウトドアの大きなシーンでは、異なる視角から、ソース間の密集点雲を登録することができる。
提案手法は,定性的,定量的な実験を通じて総合的に評価される。
論文 参考訳(メタデータ) (2023-04-10T10:54:54Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
確率的3Dポイントクラウド登録法は、ノイズ、アウトレーヤ、密度変動を克服する競合性能を示した。
本稿では,一致したガウス混合モデル(GMM)パラメータから最適変換を演算する,重複誘導確率登録手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:02:33Z) - PU-MFA : Point Cloud Up-sampling via Multi-scale Features Attention [0.0]
本稿では,マルチスケール特徴注意(PU-MFA)によるポイントクラウドアップサンプリングと呼ばれる新しいポイントクラウドアップサンプリング手法を提案する。
PU-MFAは,他の最先端手法と比較して定量的,定性的評価において優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-22T02:53:05Z) - Sequential Point Clouds: A Survey [33.20866441256135]
本稿では,シーケンシャルポイントクラウド研究のための深層学習に基づく手法について概説する。
これには、動的フロー推定、オブジェクトの検出とトラッキング、ポイントクラウドセグメンテーション、ポイントクラウド予測が含まれる。
論文 参考訳(メタデータ) (2022-04-20T09:14:20Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers [81.71904691925428]
本稿では,ポイントクラウドの完了をセット・ツー・セットの翻訳問題として再定義する手法を提案する。
我々はまた、ポイントクラウド補完のためにトランスフォーマーエンコーダデコーダアーキテクチャを採用するPoinTrと呼ばれる新しいモデルも設計している。
提案手法は,新しいベンチマークと既存ベンチマークの両方において,最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-08-19T17:58:56Z) - An Efficient Hypergraph Approach to Robust Point Cloud Resampling [57.49817398852218]
ハイパーグラフ信号処理(hgsp)に基づくポイントクラウド再サンプリングの検討
点群の信号ノード間の多面的な相互作用を捕捉するハイパーグラフスペクトルフィルタを設計する。
実験の結果, 点雲のハイパーグラフ解析の有効性が検証された。
論文 参考訳(メタデータ) (2021-03-11T23:19:54Z) - End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences [17.70819292121181]
3Dポイントのクラウド登録は、2つのポイントのクラウド間の厳密な変換を見つけるのが難しいため、依然として非常に難しいトピックである。
本稿では,ポイントクラウド登録問題を解決するために,エンドツーエンドのディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-11-30T06:55:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。