論文の概要: Artificial Intelligence and Generative Models for Materials Discovery -- A Review
- arxiv url: http://arxiv.org/abs/2508.03278v1
- Date: Tue, 05 Aug 2025 09:56:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.901592
- Title: Artificial Intelligence and Generative Models for Materials Discovery -- A Review
- Title(参考訳): 材料発見のための人工知能と生成モデル
- Authors: Albertus Denny Handoko, Riko I Made,
- Abstract要約: Reviewは、材料発見に適用可能なAI駆動生成モデルのさまざまな原則について議論することを目的としている。
また, 新規触媒, 半導体, 高分子, 結晶の設計における生成モデルの具体的な応用についても紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High throughput experimentation tools, machine learning (ML) methods, and open material databases are radically changing the way new materials are discovered. From the experimentally driven approach in the past, we are moving quickly towards the artificial intelligence (AI) driven approach, realizing the 'inverse design' capabilities that allow the discovery of new materials given the desired properties. This review aims to discuss different principles of AI-driven generative models that are applicable for materials discovery, including different materials representations available for this purpose. We will also highlight specific applications of generative models in designing new catalysts, semiconductors, polymers, or crystals while addressing challenges such as data scarcity, computational cost, interpretability, synthesizability, and dataset biases. Emerging approaches to overcome limitations and integrate AI with experimental workflows will be discussed, including multimodal models, physics informed architectures, and closed-loop discovery systems. This review aims to provide insights for researchers aiming to harness AI's transformative potential in accelerating materials discovery for sustainability, healthcare, and energy innovation.
- Abstract(参考訳): 高スループット実験ツール、機械学習(ML)メソッド、オープンマテリアルデータベースは、新しい素材の発見方法を大きく変えつつある。
過去に実験的に駆動されたアプローチから、我々は人工知能(AI)駆動のアプローチに向かって素早く動き、望ましい特性を与えられた新しい材料を発見できる「逆設計」機能を実現しています。
本稿では, 材料発見に適用可能なAI駆動生成モデルの諸原理について論じる。
また、データ不足、計算コスト、解釈可能性、合成可能性、データセットバイアスといった課題に対処しながら、新しい触媒、半導体、ポリマー、結晶を設計するための生成モデルの特定の応用を強調します。
制限を克服し、AIを実験的なワークフローに統合するための新しいアプローチについては、マルチモーダルモデル、物理情報アーキテクチャ、クローズドループ発見システムなどについて論じる。
このレビューは、サステナビリティ、ヘルスケア、エネルギー革新のための材料発見を加速するAIの変革的ポテンシャルを活用することを目的とした研究者のための洞察を提供することを目的としている。
関連論文リスト
- Materials Generation in the Era of Artificial Intelligence: A Comprehensive Survey [54.40267149907223]
材料は現代社会の基礎であり、エネルギー、エレクトロニクス、医療、交通、インフラの進歩を支えている。
高度に調整された特性を持つ新しい材料を発見・設計する能力は、世界的課題の解決に不可欠である。
データ駆動生成モデルは、事前定義された特性要件を満たす新しい材料を直接作成することによって、材料設計のための強力なツールを提供する。
論文 参考訳(メタデータ) (2025-05-22T08:33:21Z) - AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
科学科学(Science of Science, SoS)は、科学的発見の基礎となるメカニズムを探求する。
人工知能(AI)の出現は、次世代のSoSに変革の機会をもたらす。
我々は、従来の手法よりもAIの利点を概説し、潜在的な制限について議論し、それらを克服するための経路を提案する。
論文 参考訳(メタデータ) (2025-05-17T15:01:33Z) - Machine Learning - Driven Materials Discovery: Unlocking Next-Generation Functional Materials -- A minireview [0.0]
機械学習(ML)によるアプローチは、材料発見、プロパティ予測、マテリアルデザインに革命をもたらしている。
このレビューでは、材料の機械的、熱的、電気的、光学的特性を予測するML駆動方式の現実的な応用を強調した。
最終的に、AI、自動実験、および計算モデリングの相乗効果は、材料の検出、最適化、設計の方法を変える。
論文 参考訳(メタデータ) (2025-03-22T15:24:38Z) - AI-driven inverse design of materials: Past, present and future [5.813167950821478]
人間は長い間、多数の実験を通じて新しい物質を探索し、新しい物質の性質と構造を予測するための対応する理論システムを提案してきた。
計算能力の向上により、研究者は徐々に様々な電子構造計算手法を開発してきた。
近年,計算機科学分野における人工知能技術の急速な発展により,材料特性と構造との暗黙的関連が効果的に評価されるようになった。
生成的および識別的モデルに基づく素材の逆設計において顕著な進歩が見られ、研究者から広く注目を集めている。
論文 参考訳(メタデータ) (2024-11-14T13:25:04Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Advancing Extrapolative Predictions of Material Properties through Learning to Learn [1.3274508420845539]
我々は、ニューラルネットワークの注意に基づくアーキテクチャとメタ学習アルゴリズムを用いて、外挿的一般化能力を取得する。
このような外挿訓練されたモデルの可能性、特に目に見えない物質ドメインに迅速に適応する能力を強調します。
論文 参考訳(メタデータ) (2024-03-25T09:30:19Z) - Multimodal Foundation Models for Material Property Prediction and Discovery [7.167520424757711]
材料の基礎モデルの自己教師型マルチモーダルトレーニングを可能にするマルチモーダル・ラーニング・フォー・マテリアル(MultiMat)を紹介した。
複数の軸上のMaterial Projectデータベースからのデータを用いて,MultiMatの可能性を示す。
論文 参考訳(メタデータ) (2023-11-30T18:35:29Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions [0.0]
我々は,AIによる材料設計の進歩とそのエネルギー材料への応用についてレビューする。
文献における手法を,少数のデータから学習する能力の観点から評価する。
本稿では,メタラーニング,アクティブラーニング,ベイズラーニング,半/弱教師付きラーニングなど,EM教材の今後の研究方向性について提案する。
論文 参考訳(メタデータ) (2022-11-15T14:41:11Z) - Artificial Intelligence in Material Engineering: A review on
applications of AI in Material Engineering [0.0]
高性能コンピューティングにより、重要なパラメータでディープラーニング(DL)モデルをテストできるようになった。
GAN(Generative Adversarial Network)は、無機材料の化学組成の生成を促進する。
既存の分析機器からの結果を分析するためのAIの利用についても論じる。
論文 参考訳(メタデータ) (2022-09-15T04:21:07Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。