論文の概要: Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions
- arxiv url: http://arxiv.org/abs/2211.08179v2
- Date: Mon, 27 Mar 2023 03:29:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 01:49:43.491627
- Title: Artificial intelligence approaches for materials-by-design of energetic
materials: state-of-the-art, challenges, and future directions
- Title(参考訳): エネルギー材料設計のための人工知能的アプローチ--現状と課題,今後の方向性
- Authors: Joseph B. Choi, Phong C. H. Nguyen, Oishik Sen, H. S. Udaykumar,
Stephen Baek
- Abstract要約: 我々は,AIによる材料設計の進歩とそのエネルギー材料への応用についてレビューする。
文献における手法を,少数のデータから学習する能力の観点から評価する。
本稿では,メタラーニング,アクティブラーニング,ベイズラーニング,半/弱教師付きラーニングなど,EM教材の今後の研究方向性について提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) is rapidly emerging as an enabling tool for
solving various complex materials design problems. This paper aims to review
recent advances in AI-driven materials-by-design and their applications to
energetic materials (EM). Trained with data from numerical simulations and/or
physical experiments, AI models can assimilate trends and patterns within the
design parameter space, identify optimal material designs (micro-morphologies,
combinations of materials in composites, etc.), and point to designs with
superior/targeted property and performance metrics. We review approaches
focusing on such capabilities with respect to the three main stages of
materials-by-design, namely representation learning of microstructure
morphology (i.e., shape descriptors), structure-property-performance (S-P-P)
linkage estimation, and optimization/design exploration. We provide a
perspective view of these methods in terms of their potential, practicality,
and efficacy towards the realization of materials-by-design. Specifically,
methods in the literature are evaluated in terms of their capacity to learn
from a small/limited number of data, computational complexity,
generalizability/scalability to other material species and operating
conditions, interpretability of the model predictions, and the burden of
supervision/data annotation. Finally, we suggest a few promising future
research directions for EM materials-by-design, such as meta-learning, active
learning, Bayesian learning, and semi-/weakly-supervised learning, to bridge
the gap between machine learning research and EM research.
- Abstract(参考訳): 人工知能(AI)は、様々な複雑な材料設計問題を解決するためのツールとして急速に発展しつつある。
本稿では,AIによる材料設計の最近の進歩とエネルギー材料(EM)への応用を概観する。
数値シミュレーションや物理実験のデータでトレーニングされたAIモデルは、デザインパラメータ空間内のトレンドとパターンを同化し、最適な材料設計(マイクロモルフォロジー、複合材料の組み合わせなど)を特定し、優れた/ターゲットのプロパティとパフォーマンスメトリクスで設計を指差すことができる。
本稿では, 構造形態(形状記述子)の表現学習, structure-property-performance (s-p-p) のリンケージ推定, 最適化・設計探索という, 材料別設計の3つの主要段階に着目したアプローチについて検討する。
材料・デザインの実現に向けた可能性,実用性,有効性の観点から,これらの手法の展望を提供する。
具体的には,少数のデータから学習する能力,計算複雑性,他の物質種や操作条件への一般化可能性・スケーリング性,モデル予測の解釈可能性,監視・データアノテーションの負担などの観点から評価する。
最後に,機械学習研究とEM研究のギャップを埋めるために,メタラーニング,アクティブラーニング,ベイズラーニング,半/弱教師付きラーニングなど,EM教材の設計に関する将来的な研究方向性を提案する。
関連論文リスト
- AI-driven inverse design of materials: Past, present and future [5.813167950821478]
人間は長い間、多数の実験を通じて新しい物質を探索し、新しい物質の性質と構造を予測するための対応する理論システムを提案してきた。
計算能力の向上により、研究者は徐々に様々な電子構造計算手法を開発してきた。
近年,計算機科学分野における人工知能技術の急速な発展により,材料特性と構造との暗黙的関連が効果的に評価されるようになった。
生成的および識別的モデルに基づく素材の逆設計において顕著な進歩が見られ、研究者から広く注目を集めている。
論文 参考訳(メタデータ) (2024-11-14T13:25:04Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence [0.0]
提案されている物理対応生成AIプラットフォームAtomAgentsは、大規模言語モデル(LLM)のインテリジェンスをシナジする
以上の結果から, 合金間におけるキー特性の正確な予測が可能となり, 先進金属合金の開発を推し進めるためには, 固溶合金が重要な役割を担っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-13T22:46:02Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - Data-Driven Design for Metamaterials and Multiscale Systems: A Review [15.736695579155047]
メタマテリアル(Metamaterials)は、自然界にある物質を超える効果的な物質パラメータを示すために設計された人工材料である。
メタマテリアルの可能性を最大限に発揮できる魅力的なパラダイムとして、データ駆動設計(Data-driven Design)が生まれています。
我々は、データ駆動モジュールに関する既存の研究を組織し、データ取得、機械学習ベースの単位セル設計、データ駆動型マルチスケール最適化を含む。
論文 参考訳(メタデータ) (2023-07-01T22:36:40Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Artificial Intelligence in Material Engineering: A review on
applications of AI in Material Engineering [0.0]
高性能コンピューティングにより、重要なパラメータでディープラーニング(DL)モデルをテストできるようになった。
GAN(Generative Adversarial Network)は、無機材料の化学組成の生成を促進する。
既存の分析機器からの結果を分析するためのAIの利用についても論じる。
論文 参考訳(メタデータ) (2022-09-15T04:21:07Z) - Computer Vision Methods for the Microstructural Analysis of Materials:
The State-of-the-art and Future Perspectives [0.4595477728342621]
本稿では, マルチスケール画像解析に応用された最先端CNN技術について概説する。
材料科学研究へのこれらの手法の適用に関する主な課題を同定する。
論文 参考訳(メタデータ) (2022-07-29T15:27:47Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。