論文の概要: Online Continual Graph Learning
- arxiv url: http://arxiv.org/abs/2508.03283v1
- Date: Tue, 05 Aug 2025 10:05:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:55.903644
- Title: Online Continual Graph Learning
- Title(参考訳): オンライン連続グラフ学習
- Authors: Giovanni Donghi, Luca Pasa, Daniele Zambon, Cesare Alippi, Nicolò Navarin,
- Abstract要約: 継続的な学習(CL)の目的は、破滅的な忘れを回避しつつ、新たなタスクを漸進的に学習することである。
オンライン連続学習(OCL)は、分散の変化を伴う連続的なデータストリームから効率的に学習することに焦点を当てている。
- 参考スコア(独自算出の注目度): 22.132012209450004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of Continual Learning (CL) is to learn new tasks incrementally while avoiding catastrophic forgetting. Online Continual Learning (OCL) specifically focuses on learning efficiently from a continuous stream of data with shifting distribution. While recent studies explore Continual Learning on graphs exploiting Graph Neural Networks (GNNs), only few of them focus on a streaming setting. Yet, many real-world graphs evolve over time, often requiring timely and online predictions. Current approaches, however, are not well aligned with the standard OCL setting, partly due to the lack of a clear definition of online Continual Learning on graphs. In this work, we propose a general formulation for online Continual Learning on graphs, emphasizing the efficiency requirements on batch processing over the graph topology, and providing a well-defined setting for systematic model evaluation. Finally, we introduce a set of benchmarks and report the performance of several methods in the CL literature, adapted to our setting.
- Abstract(参考訳): 継続的な学習(CL)の目的は、破滅的な忘れを回避しつつ、新たなタスクを漸進的に学習することである。
オンライン連続学習(OCL)は、分散の変化を伴う連続的なデータストリームから効率的に学習することに焦点を当てている。
最近の研究では、グラフニューラルネットワーク(GNN)を利用したグラフの連続学習について検討されているが、ストリーミング設定に焦点を当てているのはごくわずかである。
しかし、多くの現実世界のグラフは時間とともに進化し、しばしば時間とオンラインの予測を必要とする。
しかし、現在のアプローチは、グラフ上のオンライン連続学習の明確な定義が欠如していることもあって、標準のOCL設定とうまく一致していない。
本研究では,グラフトポロジ上でのバッチ処理における効率要件を強調し,体系的モデル評価のための明確に定義された設定を提供する。
最後に、ベンチマークのセットを導入し、CL文献におけるいくつかのメソッドのパフォーマンスを報告する。
関連論文リスト
- Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation [24.20087360102464]
動的グラフアンラーニングを初めて研究し、DGNNアンラーニングを実装するための効率的で効率的で汎用的で後処理手法を提案する。
提案手法は,将来的な未学習要求を処理できる可能性があり,性能が大幅に向上する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - Continual Learning on Graphs: Challenges, Solutions, and Opportunities [72.7886669278433]
本稿では,既存の連続グラフ学習(CGL)アルゴリズムの総合的なレビューを行う。
従来の連続学習手法と比較し,従来の連続学習手法の適用性を分析した。
アクセス可能なアルゴリズムの包括的なリストを含む、最新のリポジトリを維持します。
論文 参考訳(メタデータ) (2024-02-18T12:24:45Z) - PUMA: Efficient Continual Graph Learning for Node Classification with Graph Condensation [49.00940417190911]
既存のグラフ表現学習モデルは、新しいグラフを学習する際に破滅的な問題に遭遇する。
本稿では,PUMA(PUdo-label guided Memory bAnkrogation)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T05:09:58Z) - Time-aware Graph Structure Learning via Sequence Prediction on Temporal
Graphs [10.034072706245544]
時系列グラフのシーケンス予測による時間認識型グラフ構造学習(TGSL)手法を提案する。
特に、タイムアウェアなコンテキスト埋め込みを予測し、Gumble-Top-Kを使用して、このコンテキスト埋め込みに最も近い候補エッジを選択する。
時間リンク予測ベンチマークの実験は、TGSLがTGATやGraphMixerのような一般的なTGNに対して大きな利益をもたらすことを示した。
論文 参考訳(メタデータ) (2023-06-13T11:34:36Z) - Continual Graph Learning: A Survey [4.618696834991205]
連続学習(CL)の研究は主にユークリッド空間で表されるデータに焦点を当てている。
ほとんどのグラフ学習モデルは静的グラフ用に調整されている。
グラフ学習モデルが漸進的にトレーニングされるとき、破滅的な忘れ方も現れます。
論文 参考訳(メタデータ) (2023-01-28T15:42:49Z) - Reinforced Continual Learning for Graphs [18.64268861430314]
本稿では,アーキテクチャベースとメモリベースのアプローチを組み合わせたグラフ連続学習戦略を提案する。
タスク・インクリメンタル・ラーニングとクラス・インクリメンタル・ラーニング・セッティングの両方において,いくつかのグラフ連続学習ベンチマーク問題を用いて数値検証を行った。
論文 参考訳(メタデータ) (2022-09-04T07:49:59Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
オンライン」連続学習は、情報保持とオンライン学習の有効性の両方を評価することができる。
オンライン連続学習では、入力される各小さなデータをまずテストに使用し、次にトレーニングセットに追加し、真にオンラインにします。
本稿では,大規模かつ自然な分布変化を示すオンライン連続視覚学習のための新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2021-08-20T06:17:20Z) - CogDL: A Comprehensive Library for Graph Deep Learning [55.694091294633054]
研究者や実践者が実験を行い、メソッドを比較し、簡単かつ効率的にアプリケーションを構築することができるグラフ深層学習ライブラリであるCogDLを紹介します。
CogDLでは,様々なグラフタスクに対するGNNモデルのトレーニングと評価のための統一設計を提案し,既存のグラフ学習ライブラリに固有のものである。
我々はCogDLのための効率的なスパース演算子を開発し、効率性のための最も競争力のあるグラフライブラリとなる。
論文 参考訳(メタデータ) (2021-03-01T12:35:16Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。