Online Continual Graph Learning
- URL: http://arxiv.org/abs/2508.03283v1
- Date: Tue, 05 Aug 2025 10:05:09 GMT
- Title: Online Continual Graph Learning
- Authors: Giovanni Donghi, Luca Pasa, Daniele Zambon, Cesare Alippi, Nicolò Navarin,
- Abstract summary: The aim of Continual Learning (CL) is to learn new tasks incrementally while avoiding catastrophic forgetting.<n>Online Continual Learning (OCL) specifically focuses on learning efficiently from a continuous stream of data with shifting distribution.
- Score: 22.132012209450004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of Continual Learning (CL) is to learn new tasks incrementally while avoiding catastrophic forgetting. Online Continual Learning (OCL) specifically focuses on learning efficiently from a continuous stream of data with shifting distribution. While recent studies explore Continual Learning on graphs exploiting Graph Neural Networks (GNNs), only few of them focus on a streaming setting. Yet, many real-world graphs evolve over time, often requiring timely and online predictions. Current approaches, however, are not well aligned with the standard OCL setting, partly due to the lack of a clear definition of online Continual Learning on graphs. In this work, we propose a general formulation for online Continual Learning on graphs, emphasizing the efficiency requirements on batch processing over the graph topology, and providing a well-defined setting for systematic model evaluation. Finally, we introduce a set of benchmarks and report the performance of several methods in the CL literature, adapted to our setting.
Related papers
- Dynamic Graph Unlearning: A General and Efficient Post-Processing Method via Gradient Transformation [24.20087360102464]
We study the dynamic graph unlearning for the first time and propose an effective, efficient, general, and post-processing method to implement DGNN unlearning.<n>Our method has the potential to handle future unlearning requests with significant performance gains.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - Continual Learning on Graphs: Challenges, Solutions, and Opportunities [72.7886669278433]
We provide a comprehensive review of existing continual graph learning (CGL) algorithms.
We compare methods with traditional continual learning techniques and analyze the applicability of the traditional continual learning techniques to forgetting tasks.
We will maintain an up-to-date repository featuring a comprehensive list of accessible algorithms.
arXiv Detail & Related papers (2024-02-18T12:24:45Z) - PUMA: Efficient Continual Graph Learning for Node Classification with Graph Condensation [49.00940417190911]
Existing graph representation learning models encounter a catastrophic problem when learning with newly incoming graphs.
In this paper, we propose a PUdo-label guided Memory bAnkrogation (PUMA) framework to enhance its efficiency and effectiveness.
arXiv Detail & Related papers (2023-12-22T05:09:58Z) - Time-aware Graph Structure Learning via Sequence Prediction on Temporal
Graphs [10.034072706245544]
We propose a Time-aware Graph Structure Learning (TGSL) approach via sequence prediction on temporal graphs.
In particular, it predicts time-aware context embedding and uses the Gumble-Top-K to select the closest candidate edges to this context embedding.
Experiments on temporal link prediction benchmarks demonstrate that TGSL yields significant gains for the popular TGNs such as TGAT and GraphMixer.
arXiv Detail & Related papers (2023-06-13T11:34:36Z) - Continual Graph Learning: A Survey [4.618696834991205]
Research on continual learning (CL) mainly focuses on data represented in the Euclidean space.
Most graph learning models are tailored for static graphs.
Catastrophic forgetting also emerges in graph learning models when being trained incrementally.
arXiv Detail & Related papers (2023-01-28T15:42:49Z) - Reinforced Continual Learning for Graphs [18.64268861430314]
This paper proposes a graph continual learning strategy that combines the architecture-based and memory-based approaches.
It is numerically validated with several graph continual learning benchmark problems in both task-incremental learning and class-incremental learning settings.
arXiv Detail & Related papers (2022-09-04T07:49:59Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Online Continual Learning with Natural Distribution Shifts: An Empirical
Study with Visual Data [101.6195176510611]
"Online" continual learning enables evaluating both information retention and online learning efficacy.
In online continual learning, each incoming small batch of data is first used for testing and then added to the training set, making the problem truly online.
We introduce a new benchmark for online continual visual learning that exhibits large scale and natural distribution shifts.
arXiv Detail & Related papers (2021-08-20T06:17:20Z) - CogDL: A Comprehensive Library for Graph Deep Learning [55.694091294633054]
We present CogDL, a library for graph deep learning that allows researchers and practitioners to conduct experiments, compare methods, and build applications with ease and efficiency.
In CogDL, we propose a unified design for the training and evaluation of GNN models for various graph tasks, making it unique among existing graph learning libraries.
We develop efficient sparse operators for CogDL, enabling it to become the most competitive graph library for efficiency.
arXiv Detail & Related papers (2021-03-01T12:35:16Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.