Key-Augmented Neural Triggers for Knowledge Sharing
- URL: http://arxiv.org/abs/2508.03340v1
- Date: Tue, 05 Aug 2025 11:40:56 GMT
- Title: Key-Augmented Neural Triggers for Knowledge Sharing
- Authors: Alex Wolf, Marco Edoardo Palma, Pooja Rani, Harald C. Gall,
- Abstract summary: Key-Augmented Neural Triggers embeds knowledge anchors into both training and inference.<n>It reduces fragmentation and grounding inference in localized context.<n>It is well-suited for scalable, low-latency, on-premise deployments.
- Score: 3.8718804267599416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Repository-level code comprehension and knowledge sharing remain core challenges in software engineering. Large language models (LLMs) have shown promise by generating explanations of program structure and logic. However, these approaches still face limitations: First, relevant knowledge is distributed across multiple files within a repository, aka semantic fragmentation. Second, retrieval inefficiency and attention saturation degrade performance in RAG pipelines, where long, unaligned contexts overwhelm attention. Third, repository specific training data is scarce and often outdated. Finally, proprietary LLMs hinder industrial adoption due to privacy and deployment constraints. To address these issues, we propose Key-Augmented Neural Triggers (KANT), a novel approach that embeds knowledge anchors into both training and inference. Unlike prior methods, KANT enables internal access to repository specific knowledge, reducing fragmentation and grounding inference in localized context. Moreover, we synthesize specialized data directly from code. At inference, knowledge anchors replace verbose context, reducing token overhead and latency while supporting efficient, on premise deployment. We evaluate KANT via: a qualitative human evaluation of the synthesized dataset's intent coverage and quality across five dimensions; compare against SOTA baselines across five qualitative dimensions and inference speed; and replication across different LLMs to assess generalizability. Results show that the synthetic training data aligned with information-seeking needs. KANT achieved over 60% preference from human annotators and a LocalStack expert (preferring 79% of cases). Also, KANT reduced inference latency by up to 85% across all models. Overall, it is well-suited for scalable, low-latency, on-premise deployments, providing a strong foundation for code comprehension.
Related papers
- CAAD: Context-Aware Adaptive Decoding for Truthful Text Generation [31.469511576774252]
We propose a context-aware adaptive decoding method for large language models.<n>Our approach achieves a 2.8 percent average improvement on TruthfulQA.<n>Our model-agnostic, scalable, and efficient method requires only a single generation pass.
arXiv Detail & Related papers (2025-08-04T08:28:25Z) - BLUR: A Bi-Level Optimization Approach for LLM Unlearning [105.98410883830596]
We argue that it is important to model the hierarchical structure of the unlearning problem.<n>We propose a novel algorithm, termed Bi-Level UnleaRning (textttBLUR), which delivers superior performance.
arXiv Detail & Related papers (2025-06-09T19:23:05Z) - Is Compression Really Linear with Code Intelligence? [60.123628177110206]
textitFormat Annealing is a lightweight, transparent training methodology designed to assess the intrinsic capabilities of pre-trained models equitably.<n>Our empirical results reveal a fundamental logarithmic relationship between measured code intelligence and bits-per-character (BPC)<n>Our work provides a more nuanced understanding of compression's role in developing code intelligence and contributes a robust evaluation framework in the code domain.
arXiv Detail & Related papers (2025-05-16T16:59:14Z) - Enhancing Repository-Level Software Repair via Repository-Aware Knowledge Graphs [8.467850621024672]
Repository-level software repair faces challenges in bridging semantic gaps between issue descriptions and code patches.<n>Existing approaches, which mostly depend on large language models (LLMs), suffer from semantic ambiguities, limited structural context understanding, and insufficient reasoning capability.<n>We propose a novel repository-aware knowledge graph (KG) that accurately links repository artifacts (issues and pull requests) and entities.
arXiv Detail & Related papers (2025-03-27T17:21:47Z) - Systematic Knowledge Injection into Large Language Models via Diverse Augmentation for Domain-Specific RAG [24.660769275714685]
Retrieval-Augmented Generation (RAG) has emerged as a prominent method for incorporating domain knowledge into Large Language Models (LLMs)<n>We present a novel framework that significantly enhances the fine-tuning process by augmenting the training data in two ways -- context augmentation and knowledge paraphrasing.
arXiv Detail & Related papers (2025-02-12T12:39:51Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Enhancing Contextual Understanding in Large Language Models through Contrastive Decoding [9.2433070542025]
Large language models (LLMs) tend to inadequately integrate input context during text generation.
We introduce a novel approach integrating contrastive decoding with adversarial irrelevant passages as negative samples.
arXiv Detail & Related papers (2024-05-04T20:38:41Z) - SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized Zero-Shot Learning [0.6792605600335813]
Zero-Shot Learning (ZSL) presents the challenge of identifying categories not seen during training.<n>We introduce a Semantic-Enhanced Representations for Zero-Shot Learning (SEER-ZSL)<n>First, we aim to distill meaningful semantic information using a probabilistic encoder, enhancing the semantic consistency and robustness.<n>Second, we distill the visual space by exploiting the learned data distribution through an adversarially trained generator. Third, we align the distilled information, enabling a mapping of unseen categories onto the true data manifold.
arXiv Detail & Related papers (2023-12-20T15:18:51Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - LORD: Leveraging Open-Set Recognition with Unknown Data [10.200937444995944]
LORD is a framework to Leverage Open-set Recognition by exploiting unknown data.
We identify three model-agnostic training strategies that exploit background data and applied them to well-established classifiers.
arXiv Detail & Related papers (2023-08-24T06:12:41Z) - KILT: a Benchmark for Knowledge Intensive Language Tasks [102.33046195554886]
We present a benchmark for knowledge-intensive language tasks (KILT)
All tasks in KILT are grounded in the same snapshot of Wikipedia.
We find that a shared dense vector index coupled with a seq2seq model is a strong baseline.
arXiv Detail & Related papers (2020-09-04T15:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.