Compressing Chain-of-Thought in LLMs via Step Entropy
- URL: http://arxiv.org/abs/2508.03346v1
- Date: Tue, 05 Aug 2025 11:48:18 GMT
- Title: Compressing Chain-of-Thought in LLMs via Step Entropy
- Authors: Zeju Li, Jianyuan Zhong, Ziyang Zheng, Xiangyu Wen, Zhijian Xu, Yingying Cheng, Fan Zhang, Qiang Xu,
- Abstract summary: Large Language Models (LLMs) using Chain-of-Thought (CoT) prompting excel at complex reasoning but generate thought processes with considerable redundancy, leading to increased inference costs and reduced efficiency.<n>We introduce a novel CoT compression framework based on step entropy, a metric that quantifies the informational contribution of individual reasoning steps to identify redundancy.
- Score: 12.576398947428988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) using Chain-of-Thought (CoT) prompting excel at complex reasoning but generate verbose thought processes with considerable redundancy, leading to increased inference costs and reduced efficiency. We introduce a novel CoT compression framework based on step entropy, a metric that quantifies the informational contribution of individual reasoning steps to identify redundancy. Through theoretical analysis and extensive empirical validation on mathematical reasoning benchmarks, we demonstrate that steps with low entropy are indeed highly redundant. Our experiments reveal that an astonishing 80\% of low-entropy intermediate steps can be pruned with minor degradation in the final answer accuracy across DeepSeek-R1-7B, 14B and Qwen3-8B. This finding sharply contrasts with random or high-entropy pruning, which severely impairs reasoning performance. Building on this, we propose a novel two-stage training strategy combining Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) reinforcement learning. This approach enables LLMs to autonomously learn to generate compressed COTs during inference by strategically incorporating [SKIP] tokens. Our method significantly enhances LLM inference efficiency while rigorously preserving accuracy, offering profound implications for practical LLM deployment and a deeper understanding of reasoning structures.
Related papers
- Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following [10.119219532863767]
lazy reasoning during the thinking stage is the primary factor contributing to poor instruction adherence.<n>We propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking.<n>Our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
arXiv Detail & Related papers (2025-08-05T07:42:00Z) - R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning [60.37610817226533]
Chain-of-thought (CoT) reasoning encourages step-by-step intermediate reasoning during inference.<n>CoT introduces substantial computational overhead due to its reliance on autoregressive decoding over long token sequences.<n>We present R-Stitch, a token-level, confidence-based hybrid decoding framework that accelerates CoT inference.
arXiv Detail & Related papers (2025-07-23T08:14:36Z) - SmartThinker: Learning to Compress and Preserve Reasoning by Step-Level Length Control [5.224609066309358]
Large reasoning models (LRMs) have exhibited remarkable reasoning capabilities through inference-time scaling.<n>Previous work has attempted to mitigate this issue by penalizing the overall length of generated samples during reinforcement learning.<n>We propose SmartThinker, a two-stage learnable framework designed to enable fine-grained control over the length of reasoning chains.
arXiv Detail & Related papers (2025-07-06T11:21:47Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - The Curse of CoT: On the Limitations of Chain-of-Thought in In-Context Learning [39.613595533503144]
Chain-of-Thought (CoT) prompting has been widely recognized for its ability to enhance reasoning capabilities in large language models.<n>We show that CoT consistently underperforms direct answering across varying model scales and benchmark complexities.<n>Our analysis uncovers a fundamental explicit-implicit duality driving CoT's performance in pattern-based ICL.
arXiv Detail & Related papers (2025-04-07T13:51:06Z) - Innate Reasoning is Not Enough: In-Context Learning Enhances Reasoning Large Language Models with Less Overthinking [39.48406368755411]
Large Language Models (LLMs) have introduced Reasoning Large Language Models (RLLMs)<n>RLLMs exhibit innate Chain-of-Thought (CoT) reasoning capability obtained from training, leading to a natural question: "Is CoT prompting necessary to enhance the reasoning capability of RLLMs?"<n>We present the first comprehensive analysis of the impacts of Zero-shot CoT and Few-shot CoT on RLLMs across mathematical reasoning tasks.
arXiv Detail & Related papers (2025-03-25T12:37:22Z) - Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models [56.37421741507468]
Chain-of-Thought (CoT) reasoning has significantly enhanced the performance of large language models (LLMs)<n>We propose a method to identify critical reasoning steps using perplexity as a measure of their importance.
arXiv Detail & Related papers (2025-02-18T20:04:51Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [51.631483479081645]
Large Language Models (LLMs) employ Chain-of-Thought (CoT) reasoning to deconstruct complex problems.<n>This paper argues that longer CoTs are often presumed superior, arguing that longer is not always better.
arXiv Detail & Related papers (2025-02-11T05:28:59Z) - T1: Advancing Language Model Reasoning through Reinforcement Learning and Inference Scaling [52.34735382627312]
Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>Existing approaches mainly rely on imitation learning and struggle to achieve effective test-time scaling.<n>We present T1 to scale reinforcement learning by encouraging exploration and understand inference scaling.
arXiv Detail & Related papers (2025-01-20T18:33:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.