論文の概要: BitsAI-Fix: LLM-Driven Approach for Automated Lint Error Resolution in Practice
- arxiv url: http://arxiv.org/abs/2508.03487v1
- Date: Tue, 05 Aug 2025 14:17:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:56.007294
- Title: BitsAI-Fix: LLM-Driven Approach for Automated Lint Error Resolution in Practice
- Title(参考訳): BitsAI-Fix: LLM-Driven Approach for Automated Lint Error Resolution in Practice
- Authors: Yuanpeng Li, Qi Long, Zhiyuan Yao, Jian Xu, Lintao Xie, Xu He, Lu Geng, Xin Han, Yueyan Chen, Wenbo Duan,
- Abstract要約: BitsAI-FixはLarge Language Models (LLM)に基づく自動リントエラー修復ワークフローである。
ByteDanceのプロダクションデプロイメントでは、5,000人以上のエンジニアをサポートし、12,000以上の静的解析問題を解決し、約85%の修正精度を達成し、毎週1,000人のアクティブアダプターが参加しています。
- 参考スコア(独自算出の注目度): 11.767390004985979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As enterprise codebases continue to grow in scale and complexity, the volume of lint errors far exceeds engineers' manual remediation capacity, leading to continuous accumulation of technical debt and hindered development efficiency. This paper presents BitsAI-Fix, an automated lint error remediation workflow based on Large Language Models (LLMs), designed to address this critical challenge in industrial-scale environments. BitsAI-Fix employs tree-sitter for context expansion and generates search-and-replace format patches through specially trained LLMs, followed by lint scan re-verification to output final remediation results. Additionally, our approach introduces an innovative progressive reinforcement learning (RL) training strategy that can automatically acquire verifiable training data during the project cold-start phase and continuously iterate the model by collecting online samples through feedback after system deployment. Furthermore, we designed a targeted rule-based reward mechanism that combines format rewards and correctness rewards while penalizing redundant modifications. We also propose a "code diff matching" methodology to continuously track online effectiveness. In production deployment at ByteDance, our solution has supported over 5,000 engineers, resolved more than 12,000 static analysis issues, achieved approximately 85% remediation accuracy, with around 1,000 weekly active adopters. This work demonstrates the practical feasibility of LLM-based code remediation solutions in enterprise environments and serves as a reference for automated code fix in large-scale industrial scenarios.
- Abstract(参考訳): エンタープライズコードベースの規模と複雑さが拡大するにつれて、lintエラーの量はエンジニアの手作業による修復能力を超え、技術的負債の継続的な蓄積と開発効率の妨げとなる。
本稿では,Large Language Models (LLMs) に基づく自動リントエラー修復ワークフローであるBitsAI-Fixについて述べる。
BitsAI-Fixは、コンテキスト拡張にツリーシッターを使用し、特別に訓練されたLSMを通して検索と置換のフォーマットパッチを生成し、続いてリントスキャンを再検証して最終的な修復結果を出力する。
さらに,本手法では,プロジェクトコールドスタート期間中に検証可能なトレーニングデータを自動的に取得し,システム展開後のフィードバックを通じてオンラインサンプルを収集してモデルを連続的に反復する,革新的なプログレッシブ強化学習(RL)トレーニング戦略を導入する。
さらに、冗長な修正をペナルティ化しながら、形式報酬と正当性報酬を組み合わせたルールベースの報酬機構を設計した。
また、オンラインの有効性を継続的に追跡する「コード差分マッチング」手法を提案する。
ByteDanceのプロダクションデプロイメントでは、5,000人以上のエンジニアをサポートし、12,000以上の静的解析問題を解決し、約85%の修正精度を達成し、毎週1,000人のアクティブアダプターが参加しています。
本研究は,企業環境におけるLLMベースのコード修復ソリューションの実現可能性を示し,大規模産業シナリオにおける自動コード修正のリファレンスとして機能する。
関連論文リスト
- DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation [68.19756761027351]
拡散大言語モデル(dLLM)は自己回帰(AR)モデルの魅力的な代替品である。
本研究は,それらの認知過程と強化学習手法について考察する。
我々の研究は、dLLM生成のメカニズムについて深い洞察を与え、効果的な拡散ネイティブなRLトレーニングフレームワークを提供します。
論文 参考訳(メタデータ) (2025-06-25T17:35:47Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
より大規模なモデルではなく、推論時間の増加を活用する統合されたテスト時間計算スケーリングフレームワークを提案する。
当社のフレームワークには,内部TTCと外部TTCの2つの補完戦略が組み込まれている。
当社の textbf32B モデルは,DeepSeek R1 671B や OpenAI o1 など,はるかに大きなモデルを上回る 46% の課題解決率を実現している。
論文 参考訳(メタデータ) (2025-03-31T07:31:32Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
大規模言語モデル(LLM)は、自然言語処理、データ分析、ソフトウェア開発など、さまざまな領域に革命をもたらした。
符号化エージェントのための新しい推論時間計算スケーリングアプローチである動的アクション再サンプリング(DARS)を提案する。
我々は、SWE-Bench Liteベンチマークに対する我々のアプローチを評価し、このスケーリング戦略がClude 3.5 Sonnet V2で55%のパス@kスコアを達成したことを実証した。
論文 参考訳(メタデータ) (2025-03-18T14:02:59Z) - LADs: Leveraging LLMs for AI-Driven DevOps [3.240228178267042]
LADは、どの条件の下で最適化が機能するかを詳細に分析することで、構成最適化の原則化されたアプローチである。
Retrieval-Augmented Generation、Few-Shot Learning、Chain-of-Thought、Feedback-Based Prompt Chainingを活用することで、LADは正確な構成を生成し、デプロイメント障害から反復的に洗練されたシステム設定を学ぶ。
我々の発見は、パフォーマンス、コスト、スケーラビリティのトレードオフに関する重要な洞察を明らかにし、実践者が異なるデプロイメントシナリオに対して適切な戦略を決定するのに役立つ。
論文 参考訳(メタデータ) (2025-02-28T08:12:08Z) - LABIIUM: AI-Enhanced Zero-configuration Measurement Automation System [0.0]
本稿では,実験の合理化とユーザの生産性向上を目的としたAIによる計測自動化システムであるLABIiumを紹介する。
Lab-Automation-Measurement Bridges (LAMBs)はVSCodeやPythonといった標準ツールを使ったシームレスなインスツルメンタ接続を可能にし、セットアップのオーバーヘッドをなくす。
この評価は、LABIiumが研究室の生産性を高め、研究と産業におけるデジタルトランスフォーメーションを支援する能力を強調している。
論文 参考訳(メタデータ) (2024-12-07T00:15:24Z) - Symbolic-AI-Fusion Deep Learning (SAIF-DL): Encoding Knowledge into Training with Answer Set Programming Loss Penalties by a Novel Loss Function Approach [0.7420433640907689]
ドメイン固有の制約、ルール、論理的推論を直接モデルの学習プロセスにエンコードします。
提案手法はフレキシブルであり、回帰タスクと分類タスクの両方に適用可能である。
この設計により、ASPルールを単に更新することで、損失関数の自動化が可能になる。
論文 参考訳(メタデータ) (2024-11-13T09:33:33Z) - Reinforcement Learning as an Improvement Heuristic for Real-World Production Scheduling [0.0]
1つの有望なアプローチは、RLエージェントを改善として訓練することであり、小さな変更を適用することで反復的に改善される最適以下のソリューションから始まる。
本手法を実世界の多目的生産スケジューリング問題に適用する。
当社のアプローチを、業界パートナの本当のデータを使って、他のアプローチと比較し、その優れたパフォーマンスを実証しました。
論文 参考訳(メタデータ) (2024-09-18T12:48:56Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language
Models [3.1690235522182104]
大規模言語モデル(LLM)は、様々なプログラミングタスクの解決にますます使われている。
長距離コード関係を学習するモデルを必要とするため,タスクは困難であることを示す。
本稿では,LLMのクエリと微調整のための新しいアプローチにより,これらの課題に対処する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T18:35:40Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification [8.733354577147093]
本稿では,Large Language Models(LLM)とFormal Verification戦略を組み合わせたソフトウェア脆弱性の自動修復手法を提案する。
我々は、ESBMC-AIフレームワークを概念実証として、よく認識され、業界に受け入れられたSMTベースのコンテキスト境界モデルチェッカー(ESBMC)と事前訓練されたトランスフォーマーモデルを活用する。
本研究は,バッファオーバーフローや演算オーバーフロー,ポインタ参照障害などの問題を高精度に検出および修正するESBMC-AIの機能を示すものである。
論文 参考訳(メタデータ) (2023-05-24T05:54:10Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。