論文の概要: ParticleSAM: Small Particle Segmentation for Material Quality Monitoring in Recycling Processes
- arxiv url: http://arxiv.org/abs/2508.03490v1
- Date: Tue, 05 Aug 2025 14:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:56.010371
- Title: ParticleSAM: Small Particle Segmentation for Material Quality Monitoring in Recycling Processes
- Title(参考訳): ParticleSAM: リサイクルプロセスにおける材料品質モニタリングのための小粒子セグメンテーション
- Authors: Yu Zhou, Pelle Thielmann, Ayush Chamoli, Bruno Mirbach, Didier Stricker, Jason Rambach,
- Abstract要約: 分割基礎モデルの小型で高密度な画像への適応であるParticleSAMを提案する。
我々は、自動データ生成およびラベリングパイプラインの助けを借りて、孤立した粒子画像からシミュレーションされた新しい高密度多粒子データセットを作成する。
- 参考スコア(独自算出の注目度): 13.068750122261331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The construction industry represents a major sector in terms of resource consumption. Recycled construction material has high reuse potential, but quality monitoring of the aggregates is typically still performed with manual methods. Vision-based machine learning methods could offer a faster and more efficient solution to this problem, but existing segmentation methods are by design not directly applicable to images with hundreds of small particles. In this paper, we propose ParticleSAM, an adaptation of the segmentation foundation model to images with small and dense objects such as the ones often encountered in construction material particles. Moreover, we create a new dense multi-particle dataset simulated from isolated particle images with the assistance of an automated data generation and labeling pipeline. This dataset serves as a benchmark for visual material quality control automation while our segmentation approach has the potential to be valuable in application areas beyond construction where small-particle segmentation is needed. Our experimental results validate the advantages of our method by comparing to the original SAM method both in quantitative and qualitative experiments.
- Abstract(参考訳): 建設産業は資源消費の面で主要な産業である。
リサイクルされた建設材料は高い再利用可能性を持つが、骨材の品質モニタリングは手動で行うのが一般的である。
視覚に基づく機械学習手法はこの問題に対してより高速で効率的な解決策を提供するが、既存のセグメンテーション法は数百の小さな粒子を持つ画像に直接適用できない設計である。
本稿では,建築材料粒子でよく見られるような,小さくて密度の高い物体の画像へのセグメンテーション基礎モデルの適応であるParticleSAMを提案する。
さらに、自動データ生成およびラベル付けパイプラインの助けを借りて、孤立粒子画像からシミュレートした新しい高密度多粒子データセットを作成する。
このデータセットは、視覚的な品質管理自動化のためのベンチマークとして機能し、セグメンテーションアプローチは、小粒子セグメンテーションが必要な構築以上のアプリケーション領域で有用である可能性がある。
定量的および定性的な実験において,本手法を元のSAM法と比較することにより,本手法の利点を検証した。
関連論文リスト
- Purifying, Labeling, and Utilizing: A High-Quality Pipeline for Small Object Detection [83.90563802153707]
PLUSNetは高品質のSmallオブジェクト検出フレームワークである。
上流の特徴を浄化するための階層的特徴(HFP)フレームワーク、中流トレーニングサンプルの品質を改善するための多重基準ラベル割り当て(MCLA)、下流タスクを達成するためにより効果的に情報を活用するための周波数分離ヘッド(FDHead)の3つのコンポーネントで構成されている。
論文 参考訳(メタデータ) (2025-04-29T10:11:03Z) - CRISP: A Framework for Cryo-EM Image Segmentation and Processing with Conditional Random Field [0.0]
本稿では,Cryo-EMデータから高品質なセグメンテーションマップを自動生成するパイプラインを提案する。
我々のモジュラーフレームワークは、様々なセグメンテーションモデルと損失関数の選択を可能にする。
限られたマイクログラフでトレーニングすると、合成データ上で90%以上の精度、リコール、精度、インターセクション・オーバー・ユニオン(IoU)、F1スコアを達成することができる。
論文 参考訳(メタデータ) (2025-02-12T10:44:45Z) - MatSAM: Efficient Extraction of Microstructures of Materials via Visual
Large Model [11.130574172301365]
Segment Anything Model (SAM)は、強力な深い特徴表現とゼロショットの一般化機能を備えた大きなビジュアルモデルである。
本稿では,SAMに基づく汎用的で効率的なマイクロ構造抽出法であるMatSAMを提案する。
簡単なが効果的な点ベースのプロンプト生成戦略が設計され、ミクロ構造の分布と形状に基づいている。
論文 参考訳(メタデータ) (2024-01-11T03:18:18Z) - Trajectory-aware Principal Manifold Framework for Data Augmentation and
Image Generation [5.31812036803692]
多くの既存の手法は、ガウス分布のようなパラメトリック分布から新しいサンプルを生成するが、入力空間と特徴空間の両方でデータ多様体に沿ってサンプルを生成することにはほとんど注意を払わない。
そこで,本論文では,多様体のバックボーンを復元し,特定の軌跡に沿ってサンプルを生成するために,新規なトラジェクトリ対応主多様体フレームワークを提案する。
本研究では, よりコンパクトな多様体表現を抽出し, 分類精度を向上し, サンプル間のスムーズな変換を生成できることを示す。
論文 参考訳(メタデータ) (2023-07-30T07:31:38Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - ParticleSeg3D: A Scalable Out-of-the-Box Deep Learning Segmentation
Solution for Individual Particle Characterization from Micro CT Images in
Mineral Processing and Recycling [1.0442349645874913]
本研究では,異なる材料を含む粒子試料の大規模CT画像から個々の粒子を抽出するインスタンスセグメンテーション法であるParticleSeg3Dを提案する。
我々のアプローチは、強力なnnU-Netフレームワークに基づいて、粒子サイズ正規化を導入し、ボーダーコア表現を用いてインスタンスセグメンテーションを可能にし、さまざまな大きさ、形状、組成の粒子を含む大規模なデータセットで訓練する。
論文 参考訳(メタデータ) (2023-01-30T22:43:46Z) - Towards Robust Part-aware Instance Segmentation for Industrial Bin
Picking [113.79582950811348]
産業用ビンピッキングのための新しい部分認識型インスタンスセグメンテーションパイプラインを定式化する。
我々は、部品マスクと部品間オフセットを予測する部分認識ネットワークを設計し、続いて認識された部品をインスタンスに組み立てる部分集約モジュールを設計する。
このデータセットは、細く、非自明な形状の様々な産業オブジェクトを含む。
論文 参考訳(メタデータ) (2022-03-05T14:58:05Z) - Learning with Free Object Segments for Long-Tailed Instance Segmentation [15.563842274862314]
インスタンスセグメントの豊富さは、オブジェクト中心のIm-ageから自由に得ることができる。
これらの知見に触発されて,これらの「自由」オブジェクトセグメントの抽出と活用を目的としたFreeSegを提案する。
FreeSegは、まれなオブジェクトカテゴリのセグメンテーションにおける最先端の精度を達成する。
論文 参考訳(メタデータ) (2022-02-22T19:06:16Z) - ZeroWaste Dataset: Towards Automated Waste Recycling [51.053682077915546]
産業レベルの廃棄物検出・分別データセットZeroWasteについて述べる。
このデータセットには、実際の廃棄物処理工場から収集された1800以上のビデオフレームが含まれている。
最先端のセグメンテーション手法では,対象物を正しく検出・分類することが困難であることを示す。
論文 参考訳(メタデータ) (2021-06-04T22:17:09Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
ImageNet作成プロセスにおける特定の設計選択が、結果のデータセットの忠実性に与える影響について検討する。
私たちの分析では、ノイズの多いデータ収集パイプラインが、結果のベンチマークと、それがプロキシとして機能する実世界のタスクとの間に、体系的なミスアライメントをもたらす可能性があることを指摘しています。
論文 参考訳(メタデータ) (2020-05-22T17:39:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。