EmbedGrad: Gradient-Based Prompt Optimization in Embedding Space for Large Language Models
- URL: http://arxiv.org/abs/2508.03533v1
- Date: Tue, 05 Aug 2025 15:03:10 GMT
- Title: EmbedGrad: Gradient-Based Prompt Optimization in Embedding Space for Large Language Models
- Authors: Xiaoming Hou, Jiquan Zhang, Zibin Lin, DaCheng Tao, Shengli Zhang,
- Abstract summary: We propose EmbedGrad, a framework that optimize text prompt embeddings through gradient-based refinement.<n>Our approach uniquely decouples training from deployment.<n> Comprehensive evaluations across mathematical reasoning, sentiment analysis, and causal judgment tasks demonstrate EmbedGrad's effectiveness.
- Score: 45.78656491861157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effectively adapting powerful pretrained foundation models to diverse tasks remains a key challenge in AI deployment. Current approaches primarily follow two paradigms:discrete optimization of text prompts through prompt engineering, or continuous adaptation via additional trainable parameters. Both exhibit limitations-discrete methods lack refinement precision while parameter-based techniques increase complexity and reduce interpretability. To address these constraints, we propose EmbedGrad, a novel framework that optimizes text prompt embeddings through gradient-based refinement. Our approach uniquely decouples training from deployment:during optimization,labeled examples guide precise embedding adjustments while preserving semantic meaning; during inference, only optimized embeddings integrate with user queries. This enables fine-grained calibration impossible in text space, such as enhancing the reasoning capability of prompts like please reason step by step. Comprehensive evaluations across mathematical reasoning, sentiment analysis, and causal judgment tasks demonstrate EmbedGrad's effectiveness:optimizing this reasoning prompt for Qwen2.5-Math-1.5B increased accuracy from 14.74\% to 58.96\% on mathematical problems. Consistent improvements were observed across model scales (0.5B-14B) and all tasks, with particularly significant gains for smaller models on complex problems like causal judgment. By bridging prompt engineering and parameter efficiency without architectural changes, our work establishes embedding refinement as a powerful new paradigm for task adaptation.
Related papers
- Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning [19.27175827358111]
Continual learning in large language models (LLMs) is prone to catastrophic forgetting, where adapting to new tasks significantly degrades performance on previously learned ones.<n>We propose a novel continual full fine-tuning approach leveraging adaptive singular value decomposition (SVD)<n>We evaluate our approach extensively on standard continual learning benchmarks using both encoder-decoder (T5-Large) and decoder-only (LLaMA-2 7B) models.
arXiv Detail & Related papers (2025-04-09T17:59:42Z) - Context-Aware Neural Gradient Mapping for Fine-Grained Instruction Processing [0.0]
This paper introduces a dynamic gradient adjustment mechanism, incorporating contextual embeddings directly into the optimization process.<n>The proposed framework consistently outperforms baseline models across various metrics, including accuracy, robustness to noise, and computational efficiency.<n>The integration of context-specific embeddings allows for a more complex understanding of language, thereby improving the model's ability to handle diverse linguistic phenomena.
arXiv Detail & Related papers (2025-01-24T21:49:24Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.<n>Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.<n>Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-10T17:14:36Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
In reasoning tasks, even a minor error can cascade into inaccurate results.
We develop a method that avoids introducing external resources, relying instead on perturbations to the input.
Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks.
arXiv Detail & Related papers (2024-03-04T16:21:54Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Decision-focused predictions via pessimistic bilevel optimization: a computational study [0.7499722271664147]
Uncertainty in optimization parameters is an important and longstanding challenge.
We build predictive models that measure a emphregret measure on decisions taken with them.
We show various computational techniques to achieve tractability.
arXiv Detail & Related papers (2023-12-29T15:05:00Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
We propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges.
Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning.
A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach.
arXiv Detail & Related papers (2023-05-15T06:40:56Z) - Analyzing Inexact Hypergradients for Bilevel Learning [0.09669369645900441]
We introduce a unified framework for computing hypergradients that generalizes existing methods based on the implicit function theorem and automatic differentiation/backpropagation.
Our numerical results show that, surprisingly, for efficient bilevel optimization, the choice of hypergradient algorithm is at least as important as the choice of lower-level solver.
arXiv Detail & Related papers (2023-01-11T23:54:27Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.