PyLate: Flexible Training and Retrieval for Late Interaction Models
- URL: http://arxiv.org/abs/2508.03555v1
- Date: Tue, 05 Aug 2025 15:23:40 GMT
- Title: PyLate: Flexible Training and Retrieval for Late Interaction Models
- Authors: Antoine Chaffin, Raphaƫl Sourty,
- Abstract summary: We introduce PyLate, a library built on top of Sentence Transformers to support multi-vector architectures.<n>By offering multi-vector-specific features such as efficient indexes, PyLate aims to accelerate research and real-world application of late interaction models.<n> PyLate has already enabled the development of state-of-the-art models, including GTE-ModernColBERT and Reason-ModernColBERT.
- Score: 3.737581531719168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural ranking has become a cornerstone of modern information retrieval. While single vector search remains the dominant paradigm, it suffers from the shortcoming of compressing all the information into a single vector. This compression leads to notable performance degradation in out-of-domain, long-context, and reasoning-intensive retrieval tasks. Multi-vector approaches pioneered by ColBERT aim to address these limitations by preserving individual token embeddings and computing similarity via the MaxSim operator. This architecture has demonstrated superior empirical advantages, including enhanced out-of-domain generalization, long-context handling, and performance in complex retrieval scenarios. Despite these compelling empirical results and clear theoretical advantages, the practical adoption and public availability of late interaction models remain low compared to their single-vector counterparts, primarily due to a lack of accessible and modular tools for training and experimenting with such models. To bridge this gap, we introduce PyLate, a streamlined library built on top of Sentence Transformers to support multi-vector architectures natively, inheriting its efficient training, advanced logging, and automated model card generation while requiring minimal code changes to code templates users are already familiar with. By offering multi-vector-specific features such as efficient indexes, PyLate aims to accelerate research and real-world application of late interaction models, thereby unlocking their full potential in modern IR systems. Finally, PyLate has already enabled the development of state-of-the-art models, including GTE-ModernColBERT and Reason-ModernColBERT, demonstrating its practical utility for both research and production environments.
Related papers
- Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate [0.0]
This paper explores an alternative, constructive approach to model development, built upon the foundation of non-trainable, deterministic input embeddings.<n>We show that specialist models trained on disparate datasets can be merged into a single, more capable Mixture-of-Experts model.<n>We introduce a layer-wise constructive training methodology, where a deep Transformer is "grown" by progressively stacking and training one layer at a time.
arXiv Detail & Related papers (2025-07-08T20:01:15Z) - SWE-Bench-CL: Continual Learning for Coding Agents [0.0]
SWE-Bench-CL is a novel continual learning benchmark built on the human-verified SWE-Bench Verified dataset.<n>By organizing GitHub issues into chronologically ordered sequences that reflect natural repository evolution, SWE-Bench-CL enables direct evaluation of an agent's ability to accumulate experience.
arXiv Detail & Related papers (2025-06-13T07:11:14Z) - An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas.<n>We propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion.
arXiv Detail & Related papers (2025-04-15T08:19:12Z) - MoSE: Hierarchical Self-Distillation Enhances Early Layer Embeddings [2.1262605464247812]
Self-Distillation is a principled approach to trading inference cost for accuracy across various code understanding tasks.<n>Our architecture improves text-to-code and code-to-code search by targeting specific encoder layers as exit heads.<n>We release a new dataset created through code translation that extends text-to-code benchmarks with cross-language code-to-code pairs.
arXiv Detail & Related papers (2025-03-04T21:08:17Z) - Adaptable Embeddings Network (AEN) [49.1574468325115]
We introduce Adaptable Embeddings Networks (AEN), a novel dual-encoder architecture using Kernel Density Estimation (KDE)
AEN allows for runtime adaptation of classification criteria without retraining and is non-autoregressive.
The architecture's ability to preprocess and cache condition embeddings makes it ideal for edge computing applications and real-time monitoring systems.
arXiv Detail & Related papers (2024-11-21T02:15:52Z) - Data-Juicer Sandbox: A Feedback-Driven Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a new sandbox suite tailored for integrated data-model co-development.<n>This sandbox provides a feedback-driven experimental platform, enabling cost-effective and guided refinement of both data and models.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI.
As the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios.
This tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators.
arXiv Detail & Related papers (2024-07-12T09:24:34Z) - FlexModel: A Framework for Interpretability of Distributed Large
Language Models [0.0]
We present FlexModel, a software package providing a streamlined interface for engaging with models distributed across multi- GPU and multi-node configurations.
The library is compatible with existing model distribution libraries and encapsulates PyTorch models.
It exposes user-registerable HookFunctions to facilitate straightforward interaction with distributed model internals.
arXiv Detail & Related papers (2023-12-05T21:19:33Z) - Training dynamic models using early exits for automatic speech
recognition on resource-constrained devices [15.879328412777008]
Early-exit architectures enable the development of dynamic models capable of adapting their size and architecture to varying levels of computational resources and ASR performance demands.
We show that early-exit models trained from scratch not only preserve performance when using fewer encoder layers but also exhibit enhanced task accuracy compared to single-exit or pre-trained models.
Results provide insights into the training dynamics of early-exit architectures for ASR models.
arXiv Detail & Related papers (2023-09-18T07:45:16Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - ColBERTv2: Effective and Efficient Retrieval via Lightweight Late
Interaction [15.336103841957328]
ColBERTv2 is a retriever that couples an aggressive residual compression mechanism with a denoised supervision strategy.
We evaluate ColBERTv2 across a range of benchmarks, establishing state-of-the-art quality within and outside the training domain.
arXiv Detail & Related papers (2021-12-02T18:38:50Z) - Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models [0.0]
Reinforcement learning (RL) is one of the most active fields of AI research.
Development methodology still lags behind, with a severe lack of standard APIs to foster the development of RL applications.
We present a workflow and tools for the decoupled development and maintenance of multi-purpose agent-based models and derived single-purpose reinforcement learning environments.
arXiv Detail & Related papers (2021-02-19T09:25:21Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
We propose a novel framework for conditional generation in multimodal spaces.
It uses latent variables to model generalizable learning patterns.
At inference, the latent variables are optimized to find optimal solutions corresponding to multiple output modes.
arXiv Detail & Related papers (2020-10-07T03:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.