SWE-Bench-CL: Continual Learning for Coding Agents
- URL: http://arxiv.org/abs/2507.00014v1
- Date: Fri, 13 Jun 2025 07:11:14 GMT
- Title: SWE-Bench-CL: Continual Learning for Coding Agents
- Authors: Thomas Joshi, Shayan Chowdhury, Fatih Uysal,
- Abstract summary: SWE-Bench-CL is a novel continual learning benchmark built on the human-verified SWE-Bench Verified dataset.<n>By organizing GitHub issues into chronologically ordered sequences that reflect natural repository evolution, SWE-Bench-CL enables direct evaluation of an agent's ability to accumulate experience.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have achieved impressive results on static code-generation benchmarks, but real-world software development unfolds as a continuous stream of evolving issues, fixes, and feature requests. We introduce SWE-Bench-CL, a novel continual learning benchmark built on the human-verified SWE-Bench Verified dataset introduced by OpenAI and Princeton-NLP in 2024. By organizing GitHub issues into chronologically ordered sequences that reflect natural repository evolution, SWE-Bench-CL enables direct evaluation of an agent's ability to accumulate experience, transfer knowledge across tasks, and resist catastrophic forgetting. We complement the dataset with (i) a preliminary analysis of inter-task structural similarity and contextual sensitivity, (ii) an interactive LangGraph-based evaluation framework augmented with a FAISS-backed semantic memory module, and (iii) a suite of specialized continual learning metrics -- including average accuracy, forgetting, forward/backward transfer, tool-use efficiency, and a generalized Composite Continual Learning Score and CL-F-beta score -- to capture the stability-plasticity trade-off. We outline a rigorous experimental protocol comparing memory-enabled and memory-disabled agents across diverse Python repositories. All code and data are publicly available at https://github.com/thomasjoshi/agents-never-forget, providing the community with a reproducible platform for developing more adaptive and robust AI agents in software engineering.
Related papers
- ACT: Bridging the Gap in Code Translation through Synthetic Data Generation & Adaptive Training [1.4709455282157278]
Auto-Train for Code Translation (ACT) aims to improve code translation capabilities by enabling in-house finetuning of open-source Large Language Models (LLMs)<n>ACT's automated pipeline significantly boosts the performance of these models, narrowing the gap between open-source accessibility and the high performance of closed-source solutions.<n>Our results demonstrate that ACT consistently enhances the effectiveness of open-source models, offering businesses and developers a secure and reliable alternative.
arXiv Detail & Related papers (2025-07-22T11:35:35Z) - SWE-rebench: An Automated Pipeline for Task Collection and Decontaminated Evaluation of Software Engineering Agents [34.16732444158405]
LLM-based agents have shown promising capabilities in a growing range of software engineering (SWE) tasks.<n>High-quality training data is scarce, especially data that reflects real-world SWE scenarios.<n>Existing datasets are either limited to one-shot code generation or comprise small, manually curated collections of interactive tasks.
arXiv Detail & Related papers (2025-05-26T18:01:00Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - Learn-by-interact: A Data-Centric Framework for Self-Adaptive Agents in Realistic Environments [33.83610929282721]
Learn-by-interact is a data-centric framework to adapt large language models (LLMs) to any given environments without human annotations.<n>We assess the quality of our synthetic data by using them in both training-based scenarios and training-free in-context learning (ICL)<n>Experiments on SWE-bench, WebArena, OSWorld and Spider2-V spanning across realistic coding, web, and desktop environments show the effectiveness of Learn-by-interact.
arXiv Detail & Related papers (2025-01-18T22:34:41Z) - On the Impacts of Contexts on Repository-Level Code Generation [5.641402231731082]
We present RepoExec, a novel benchmark designed to evaluate repository-level code generation.<n>We focus on three key aspects: executability, functional correctness through comprehensive test case generation, and accurate utilization of cross-file contexts.
arXiv Detail & Related papers (2024-06-17T10:45:22Z) - CTP: Towards Vision-Language Continual Pretraining via Compatible
Momentum Contrast and Topology Preservation [128.00940554196976]
Vision-Language Continual Pretraining (VLCP) has shown impressive results on diverse downstream tasks by offline training on large-scale datasets.
To support the study of Vision-Language Continual Pretraining (VLCP), we first contribute a comprehensive and unified benchmark dataset P9D.
The data from each industry as an independent task supports continual learning and conforms to the real-world long-tail nature to simulate pretraining on web data.
arXiv Detail & Related papers (2023-08-14T13:53:18Z) - Continual Variational Autoencoder Learning via Online Cooperative
Memorization [11.540150938141034]
Variational Autoencoders (VAE) have been successfully used in continual learning classification tasks.
However, their ability to generate images with specifications corresponding to the classes and databases learned during Continual Learning is not well understood.
We develop a new theoretical framework that formulates CL as a dynamic optimal transport problem.
We then propose a novel memory buffering approach, namely the Online Cooperative Memorization (OCM) framework.
arXiv Detail & Related papers (2022-07-20T18:19:27Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated learning (FL) is an emerging machine learning method that can be applied in mobile edge systems.
We show that running to the gradient descent (SGD) in such a setting can be viewed as adding a momentum-like term to the global aggregation process.
arXiv Detail & Related papers (2022-02-17T02:01:37Z) - The CLEAR Benchmark: Continual LEArning on Real-World Imagery [77.98377088698984]
Continual learning (CL) is widely regarded as crucial challenge for lifelong AI.
We introduce CLEAR, the first continual image classification benchmark dataset with a natural temporal evolution of visual concepts.
We find that a simple unsupervised pre-training step can already boost state-of-the-art CL algorithms.
arXiv Detail & Related papers (2022-01-17T09:09:09Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Comparative Code Structure Analysis using Deep Learning for Performance
Prediction [18.226950022938954]
This paper aims to assess the feasibility of using purely static information (e.g., abstract syntax tree or AST) of applications to predict performance change based on the change in code structure.
Our evaluations of several deep embedding learning methods demonstrate that tree-based Long Short-Term Memory (LSTM) models can leverage the hierarchical structure of source-code to discover latent representations and achieve up to 84% (individual problem) and 73% (combined dataset with multiple of problems) accuracy in predicting the change in performance.
arXiv Detail & Related papers (2021-02-12T16:59:12Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.