On the (In)Significance of Feature Selection in High-Dimensional Datasets
- URL: http://arxiv.org/abs/2508.03593v1
- Date: Tue, 05 Aug 2025 15:58:31 GMT
- Title: On the (In)Significance of Feature Selection in High-Dimensional Datasets
- Authors: Bhavesh Neekhra, Debayan Gupta, Partha Pratim Chakravarti,
- Abstract summary: We test the null hypothesis of using randomly selected features to compare against features selected by FS algorithms.<n>Our results show that FS on high-dimensional datasets (in particular gene expression) in classification tasks is not useful.
- Score: 0.5266869303483376
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Extensive research has been done on feature selection (FS) algorithms for high-dimensional datasets aiming to improve model performance, reduce computational cost and identify features of interest. We test the null hypothesis of using randomly selected features to compare against features selected by FS algorithms to validate the performance of the latter. Our results show that FS on high-dimensional datasets (in particular gene expression) in classification tasks is not useful. We find that (1) models trained on small subsets (0.02%-1% of all features) of randomly selected features almost always perform comparably to those trained on all features, and (2) a "typical"- sized random subset provides comparable or superior performance to that of top-k features selected in various published studies. Thus, our work challenges many feature selection results on high dimensional datasets, particularly in computational genomics. It raises serious concerns about studies that propose drug design or targeted interventions based on computationally selected genes, without further validation in a wet lab.
Related papers
- Permutation-based multi-objective evolutionary feature selection for high-dimensional data [43.18726655647964]
We propose a novel feature selection method for high-dimensional data, based on the well-known permutation feature importance approach.<n>The proposed method employs a multi-objective evolutionary algorithm to search for candidate feature subsets.<n>The effectiveness of our method has been validated on a set of 24 publicly available high-dimensional datasets.
arXiv Detail & Related papers (2025-01-24T08:11:28Z) - Large-scale Multi-objective Feature Selection: A Multi-phase Search Space Shrinking Approach [0.27624021966289597]
Feature selection is a crucial step in machine learning, especially for high-dimensional datasets.
This paper proposes a novel large-scale multi-objective evolutionary algorithm based on the search space shrinking, termed LMSSS.
The effectiveness of the proposed algorithm is demonstrated through comprehensive experiments on 15 large-scale datasets.
arXiv Detail & Related papers (2024-10-13T23:06:10Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.<n>Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses.
Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores.
arXiv Detail & Related papers (2024-03-06T16:31:56Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - A Performance-Driven Benchmark for Feature Selection in Tabular Deep
Learning [131.2910403490434]
Data scientists typically collect as many features as possible into their datasets, and even engineer new features from existing ones.
Existing benchmarks for tabular feature selection consider classical downstream models, toy synthetic datasets, or do not evaluate feature selectors on the basis of downstream performance.
We construct a challenging feature selection benchmark evaluated on downstream neural networks including transformers.
We also propose an input-gradient-based analogue of Lasso for neural networks that outperforms classical feature selection methods on challenging problems.
arXiv Detail & Related papers (2023-11-10T05:26:10Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Sparse Centroid-Encoder: A Nonlinear Model for Feature Selection [1.2487990897680423]
We develop a sparse implementation of the centroid-encoder for nonlinear data reduction and visualization called Centro Sparseid-Encoder.
We also provide a feature selection framework that first ranks each feature by its occurrence, and the optimal number of features is chosen using a validation set.
The algorithm is applied to a wide variety of data sets including, single-cell biological data, high dimensional infectious disease data, hyperspectral data, image data, and speech data.
arXiv Detail & Related papers (2022-01-30T20:46:24Z) - Selecting the suitable resampling strategy for imbalanced data
classification regarding dataset properties [62.997667081978825]
In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class.
This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples.
Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class.
arXiv Detail & Related papers (2021-12-15T18:56:39Z) - Feature Selection Using Reinforcement Learning [0.0]
The space of variables or features that can be used to characterize a particular predictor of interest continues to grow exponentially.
Identifying the most characterizing features that minimizes the variance without jeopardizing the bias of our models is critical to successfully training a machine learning model.
arXiv Detail & Related papers (2021-01-23T09:24:37Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
We propose a joint adaptive graph and structured sparsity regularization unsupervised feature selection (JASFS) method.
A subset of optimal features will be selected in group, and the number of selected features will be determined automatically.
Experimental results on eight benchmarks demonstrate the effectiveness and efficiency of the proposed method.
arXiv Detail & Related papers (2020-10-09T08:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.