論文の概要: AttZoom: Attention Zoom for Better Visual Features
- arxiv url: http://arxiv.org/abs/2508.03625v1
- Date: Tue, 05 Aug 2025 16:42:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:56.078455
- Title: AttZoom: Attention Zoom for Better Visual Features
- Title(参考訳): AttZoom: より良いビジュアル機能のための注意力Zoom
- Authors: Daniel DeAlcala, Aythami Morales, Julian Fierrez, Ruben Tolosana,
- Abstract要約: 我々は、畳み込みニューラルネットワーク(CNN)における特徴抽出を改善するために設計されたモデルに依存しない空間的注意機構である注意型Zoomを提案する。
本手法では,入力中の高重要領域を空間的に強調するスタンドアロン層を導入する。
Grad-CAMと空間ゆらぎを用いた視覚解析により,本手法は細粒度,多彩な注意パターンを助長することが示された。
- 参考スコア(独自算出の注目度): 15.682871615735019
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present Attention Zoom, a modular and model-agnostic spatial attention mechanism designed to improve feature extraction in convolutional neural networks (CNNs). Unlike traditional attention approaches that require architecture-specific integration, our method introduces a standalone layer that spatially emphasizes high-importance regions in the input. We evaluated Attention Zoom on multiple CNN backbones using CIFAR-100 and TinyImageNet, showing consistent improvements in Top-1 and Top-5 classification accuracy. Visual analyses using Grad-CAM and spatial warping reveal that our method encourages fine-grained and diverse attention patterns. Our results confirm the effectiveness and generality of the proposed layer for improving CCNs with minimal architectural overhead.
- Abstract(参考訳): 本稿では,畳み込みニューラルネットワーク(CNN)の機能抽出を改善するために,モジュール型かつモデルに依存しない空間アテンション機構であるAttention Zoomを提案する。
アーキテクチャ固有の統合を必要とする従来のアテンションアプローチとは異なり、本手法では、入力中の高重要領域を空間的に強調するスタンドアロン層を導入する。
CIFAR-100とTinyImageNetを用いて複数のCNNバックボーン上でのアテンションZoomを評価し,Top-1とTop-5の分類精度が一貫した改善を示した。
Grad-CAMと空間ゆらぎを用いた視覚解析により,本手法は細粒度,多彩な注意パターンを助長することが示された。
アーキテクチャ上のオーバーヘッドを最小限に抑えるため,提案手法の有効性と汎用性を確認した。
関連論文リスト
- Enhanced Convolutional Neural Networks for Improved Image Classification [0.40964539027092917]
CIFAR-10は、小規模のマルチクラスデータセットの分類モデルの性能を評価するために広く使用されているベンチマークである。
本稿では,より深い畳み込みブロック,バッチ正規化,ドロップアウト正規化を統合したCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-02T04:32:25Z) - Vision Eagle Attention: a new lens for advancing image classification [0.8158530638728501]
コンボリューショナルな空間的注意力を用いた視覚的特徴抽出を促進する新しい注意機構であるビジョンイーグル注意(Vision Eagle Attention)を導入する。
このモデルは、局所的な空間的特徴を捉えるために畳み込みを適用し、画像の最も情報性の高い領域を選択的に強調するアテンションマップを生成する。
Vision Eagle Attentionを軽量なResNet-18アーキテクチャに統合しました。
論文 参考訳(メタデータ) (2024-11-15T20:21:59Z) - A Primal-Dual Framework for Transformers and Neural Networks [52.814467832108875]
自己注意は、シーケンスモデリングタスクにおけるトランスフォーマーの顕著な成功の鍵である。
自己アテンションは、支持ベクトル回帰問題から導かれる支持ベクトル展開に対応することを示す。
Batch Normalized Attention (Attention-BN) と Scaled Head (Attention-SH) の2つの新しい注意点を提案する。
論文 参考訳(メタデータ) (2024-06-19T19:11:22Z) - An Advanced Features Extraction Module for Remote Sensing Image Super-Resolution [0.5461938536945723]
チャネル・アンド・スペースアテンション特徴抽出(CSA-FE)と呼ばれる高度な特徴抽出モジュールを提案する。
提案手法は,高頻度情報を含む特定のチャネルや空間的位置に着目し,関連する特徴に焦点を合わせ,無関係な特徴を抑えるのに役立つ。
本モデルは,既存モデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2024-05-07T18:15:51Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - TOPIQ: A Top-down Approach from Semantics to Distortions for Image
Quality Assessment [53.72721476803585]
画像品質評価(IQA)は、ディープニューラルネットワークによる顕著な進歩を目の当たりにしたコンピュータビジョンの基本課題である。
本稿では,高レベルの意味論を用いてIQAネットワークを誘導し,意味的に重要な局所歪み領域に注目するトップダウンアプローチを提案する。
提案手法の重要な要素は,低レベル特徴に対するアテンションマップを算出した,クロススケールアテンション機構である。
論文 参考訳(メタデータ) (2023-08-06T09:08:37Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - An Attention Module for Convolutional Neural Networks [5.333582981327498]
本稿では,AW-畳み込みを開発することで,畳み込みニューラルネットワークのためのアテンションモジュールを提案する。
画像分類とオブジェクト検出タスクのための複数のデータセットの実験により,提案した注目モジュールの有効性が示された。
論文 参考訳(メタデータ) (2021-08-18T15:36:18Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Weakly Supervised Attention Pyramid Convolutional Neural Network for
Fine-Grained Visual Classification [71.96618723152487]
注意ピラミッド畳み込みニューラルネットワーク(AP-CNN)について紹介する。
AP-CNNは高レベルのセマンティックと低レベルの詳細な特徴表現の両方を学ぶ。
追加のバウンディングボックス/パートアノテーションを必要とせずに、エンドツーエンドでトレーニングすることができる。
論文 参考訳(メタデータ) (2020-02-09T12:33:23Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
グローバルな相関関係を適応的に捉えるために,Hybrid Multiple Attention Network (HMANet) という新しいアテンションベースのフレームワークを提案する。
本稿では,機能的冗長性を低減し,自己注意機構の効率を向上させるため,単純で効果的な領域シャッフルアテンション(RSA)モジュールを提案する。
論文 参考訳(メタデータ) (2020-01-09T07:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。