Do We Need Pre-Processing for Deep Learning Based Ultrasound Shear Wave Elastography?
- URL: http://arxiv.org/abs/2508.03744v1
- Date: Fri, 01 Aug 2025 11:26:46 GMT
- Title: Do We Need Pre-Processing for Deep Learning Based Ultrasound Shear Wave Elastography?
- Authors: Sarah Grube, Sören Grünhagen, Sarah Latus, Michael Meyling, Alexander Schlaefer,
- Abstract summary: Estimating the elasticity of soft tissue can provide useful information for various diagnostic applications.<n>Deep learning-based approaches could reduce the need for and the bias of traditional ultrasound pre-processing steps.
- Score: 40.44081073917452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating the elasticity of soft tissue can provide useful information for various diagnostic applications. Ultrasound shear wave elastography offers a non-invasive approach. However, its generalizability and standardization across different systems and processing pipelines remain limited. Considering the influence of image processing on ultrasound based diagnostics, recent literature has discussed the impact of different image processing steps on reliable and reproducible elasticity analysis. In this work, we investigate the need of ultrasound pre-processing steps for deep learning-based ultrasound shear wave elastography. We evaluate the performance of a 3D convolutional neural network in predicting shear wave velocities from spatio-temporal ultrasound images, studying different degrees of pre-processing on the input images, ranging from fully beamformed and filtered ultrasound images to raw radiofrequency data. We compare the predictions from our deep learning approach to a conventional time-of-flight method across four gelatin phantoms with different elasticity levels. Our results demonstrate statistically significant differences in the predicted shear wave velocity among all elasticity groups, regardless of the degree of pre-processing. Although pre-processing slightly improves performance metrics, our results show that the deep learning approach can reliably differentiate between elasticity groups using raw, unprocessed radiofrequency data. These results show that deep learning-based approaches could reduce the need for and the bias of traditional ultrasound pre-processing steps in ultrasound shear wave elastography, enabling faster and more reliable clinical elasticity assessments.
Related papers
- The Efficacy of Semantics-Preserving Transformations in Self-Supervised Learning for Medical Ultrasound [60.80780313225093]
This study systematically investigated the impact of data augmentation and preprocessing strategies in self-supervised learning for lung ultrasound.<n>Three data augmentation pipelines were assessed: a baseline pipeline commonly used across imaging domains, a novel semantic-preserving pipeline designed for ultrasound, and a distilled set of the most effective transformations from both pipelines.
arXiv Detail & Related papers (2025-04-10T16:26:47Z) - S-CycleGAN: Semantic Segmentation Enhanced CT-Ultrasound Image-to-Image Translation for Robotic Ultrasonography [2.07180164747172]
We introduce an advanced deep learning model, dubbed S-CycleGAN, which generates high-quality synthetic ultrasound images from computed tomography (CT) data.
The synthetic images are utilized to enhance various aspects of our development of the robot-assisted ultrasound scanning system.
arXiv Detail & Related papers (2024-06-03T10:53:45Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Investigating Pulse-Echo Sound Speed Estimation in Breast Ultrasound
with Deep Learning [44.70495434283752]
We propose a deep-learning approach for sound speed estimation from in-phase and quadrature ultrasound signals.
We develop a large-scale simulated ultrasound dataset that generates quasi-realistic breast tissue.
We evaluate the model on simulated, phantom, and in-vivo breast ultrasound data.
arXiv Detail & Related papers (2023-02-06T19:02:44Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychography is a well-established coherent diffraction imaging technique that enables non-invasive imaging of samples at a nanometer scale.
One major limitation of ptychography is the long data acquisition time due to mechanical scanning of the sample.
We propose a generative model combining deep image priors with deep generative priors.
arXiv Detail & Related papers (2022-05-05T02:18:26Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - A Universal Deep Learning Framework for Real-Time Denoising of
Ultrasound Images [0.0]
We define a universal deep learning framework for real-time denoising of ultrasound images.
We analyse and compare state-of-the-art methods for the smoothing of ultrasound images.
Then, we propose a tuned version of the selected state-of-the-art denoising methods.
arXiv Detail & Related papers (2021-01-22T14:18:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.